73 resultados para Liquid crystal polymers


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Four new neutral copper-azido polymers [Cu(4)(N(3))(8)(Me-hmpz)(2)](n) (1), [Cu(4)(N(3))(8)(men)(2)](n) (2), [Cu(5)(N(3))(10)(N,N-dmen)(2)](n) (3) and [Cu(5)(N(3))(10)(N,N'-dmen)(5)](n) (4) [Me-hmpz = 1-methylhomopiperazine; men = N-methylethylenediamine; N, N-dmen = N, N-dimethylethylenediamine and N, N'-dmen = N, N'-dimethylethylenediamine] have been synthesized by using various molar equivalents of the chelating diamine ligands with Cu(NO(3))(2)center dot 3H(2)O and an excess of NaN(3). Single-crystal X-ray structures show that the basic asymmetric units of 1 and 2 are very similar, but the overall 1D structures were found to be quite different. Complex 3 with a different composition was found to be 2D in nature, while the 1D complex 4 with 1 : 1 metal to diamine ratio presented several new structural features. Cryomagnetic susceptibility measurements over a wide range of temperature were corroborated with density functional theory calculations (B3LYP functional) performed on the complexes 1-3 to provide a qualitative theoretical interpretation of their overall magnetic behavior.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Herein, a new aromatic carboxylate ligand, namely, 4-(dipyridin-2-yl)aminobenzoic acid (HL), has been designed and employed for the construction of a series of lanthanide complexes (Eu3+ = 1, Tb3+ = 2, and Gd3+ = 3). Complexes of 1 and 2 were structurally authenticated by single-crystal X-ray diffraction and were found to exist as infinite 1D coordination polymers with the general formulas {Eu(L)(3)(H2O)(2)]}(n) (1) and {Tb(L)(3)(H2O)]center dot(H2O)}(n) (2). Both compounds crystallize in monoclinic space group C2/c. The photophysical properties demonstrated that the developed 4-(dipyridin-2-yl)aminobenzoate ligand is well suited for the sensitization of Tb3+ emission (Phi(overall) = 64%) thanks to the favorable position of the triplet state ((3)pi pi*) of the ligand the energy difference between the triplet state of the ligand and the excited state of Tb3+ (Delta E) = (3)pi pi* - D-5(4) = 3197 cm(-1)], as investigated in the Gd3+ complex. On the other hand, the corresponding Eu3+ complex shows weak luminescence efficiency (Phi(overall) = 7%) due to poor matching of the triplet state of the ligand with that of the emissive excited states of the metal ion (Delta E = (3)pi pi* - D-5(0) = 6447 cm(-1)). Furthermore, in the present work, a mixed lanthanide system featuring Eu3+ and Tb3+ ions with the general formula {Eu0.5Tb0.5(L)(3)(H2O)(2)]}(n) (4) was also synthesized, and the luminescent properties were evaluated and compared with those of the analogous single-lanthanide-ion systems (1 and 2). The lifetime measurements for 4 strongly support the premise that efficient energy transfer occurs between Tb3+ and Eu3+ in a mixed lanthanide system (eta = 86%).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Three pi-electron rich fluorescent supramolecular polymers (1-3) have been synthesized incorporating 2-methyl-3-butyn-2-ol groups in reasonable yield by employing Sonagashira coupling. They were characterized by multinuclear NMR (H-1, C-13), ESI-MS and single crystal X-ray diffraction analyses 1 = 1( 2-methyl-3-butyn-2-ol) pyrene; 2 = 9,10-bis(2-methyl-3-butyn-2-ol) anthracene; 3 = 1,3,6,8-tetrakis(2methyl- 3-butyn-2-ol) pyrene]. Single crystal structures of 1-3 indicated that the incorporation of hydroxy (-OH) groups on the peripheral of the fluorophores helps them to self-associate into an infinite supramolecular polymeric network via intermolecular hydrogen bonding interactions between the adjacent discrete fluorophore units. All these compounds showed fluorescence characteristics in chloroform solution due to the extended pi-conjugation and were used as selective fluorescent sensors for the detection of electron deficient nitroaromatics. The changes in photophysical properties of fluorophores (1-3) upon complex formation with electron deficient nitroaromatic explosives were studied in chloroform solution by using fluorescence spectroscopy. All these fluorophores showed the largest quenching response with moderate selectivity for nitroaromatics over various other electron deficient/ rich aromatic compounds tested (Chart 1). Analysis of the fluorescence titration profile of 9,10-bis(2-methyl-3butyn- 2-ol) anthracene fluorophore (2) with 1,3,5-trinitrotoluene/ 2,4-dinitrotoluene provided evidence that this particular fluorophore detects nitroaromatics in the nanomolar range 2.0 ppb for TNT, 13.7 ppb for DNT]. Moreover, sharp visual color change was observed upon mixing nitroaromatic (DNT) with fluorophores (1-3) both in solution as well as in solid phase. Furthermore, the vapor-phase sensing study of thin film of fluorophores (1-3) showed efficient quenching responses for DNT and this sensing process is reproducible. Selective fluorescence quenching response including a sharp visual color change for nitroaromatics make these tested fluorophores (1-3) as potential sensors for nitroaromatic compounds with a detection limit of ppb level.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This article presents the investigation of the coordination behavior of a newly synthesized tricarboxylate ligand, obtained by joining imidazole dicarboxylic acid and 4-carboxybenzyl moieties cbimdaH(3), 1-(4-carboxybenzyl)-1H-imidazole-4,5-dicarboxylic acid]. Two novel coordination polymers were obtained through solvothermal reactions under similar conditions namely Sr(cbimdaH)(H2O)](n) (1) and Cd-2(cbimdaH)(2)(H2O)(6)](n)center dot(DMF)(3n)(H2O)(3n) (2), with the ligand behaving as a dianionic tricarboxylate linker. The single crystal X-ray structures show that while 1 forms a 3D coordination polymer, 2 forms a 1D polymer which is further assembled in three dimensions through supramolecular interactions (H-bonding). Complex 1 consists of Sr2+ ions in a distorted dodecahedral coordination geometry, while 2 consists of Cd2+ ions in distorted pentagonal bipyramidal geometries. A topology study reveals that 1 has a new topology based on the 5,6-coordinated 3D net architecture. The luminescence properties of the complexes in the solid state and their thermal stabilities were studied.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ligational behaviour of (E)-2-amino-N'-1-(2-hydroxyphenyl)ethylidene]benzohydrazide (Aheb) towards later 3d metal ionscopper(II), cobalt(II), manganese(II), zinc(II), cadmium(II) and nickel(IV)] has been studied. Their structures have been elucidated on the basis of spectral (IR, H-1 NMR, UV-Vis, EPR and FAB-mass), elemental analyses, conductance measurements, magnetic moments, and thermal studies. During complexation Ni(II) ion has got oxidized to Ni(IV). The changes in the bond parameters of the ligand on complexation has been discussed by comparing the crystal structure of the ligand with that of its Ni(IV) complex. The X-ray single crystal analysis of Ni(aheb)(2)]Cl-2 center dot 4H(2)O has confirmed an octahedral geometry around the metal ion. EPR spectra of the Cu(II) complex in polycrystalline state at room (300 K) and liquid nitrogen temperature (77 K) were recorded and their salient features are reported. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two porous organic polymers decorated with the amide functionality were synthesized mechanochemically and their properties were compared with the ones prepared by conventional solution mediated method. All the POPs were subjected to gas and water vapor sorption studies. The mechanochemically synthesized POPs have less surface area and show moderate adsorption properties compared to the solution mediated POPs. The amide based POPs show remarkable stability in water and concentrated acids.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new series of luminescent 4-(2-(4-alkoxyphenyl)-6-methoxypyridin-4-yl) benzonitriles containing three ring systems, viz. methoxy pyridine, benzonitrile and alkoxy benzene with variable alkoxy chain length, with bent-core structures were synthesized as potential mesogens and characterized by spectral techniques. Their liquid crystalline behavior was investigated by polarizing optical microscopy (POM), differential scanning calorimetry (DSC) and variable temperature powder X-ray diffraction (PXRD) measurements. The study reveals that compounds with shorter chain lengths i.e. m = 4] exclusively exhibit the nematic phase while compounds with longer chain lengths i.e. m = 6-14 (only even)] show predominantly the orthorhombic columnar phase. Single crystal X-ray analysis of 4-(2-(4-butyloxy/octyloxyphenyl)-6-methoxypyridin-4-yl) benzonitriles reveals that they possess slightly non-planar unsymmetrical bent structures and their molecular packing consists of nonconventional H-bond interactions; it also explains the observed liquid crystalline phase. An optical study indicates that the title compounds are good blue emitting materials showing absorption and emission bands in the range 335-345 nm and 415-460 nm, respectively. An electrochemical study of 4-(2-(4-octyloxyphenyl)-6-methoxypyridin-4-yl) benzonitrile shows a band gap of 1.89 eV with HOMO and LUMO energy levels of -5.06 and -3.17 eV, respectively. Also, density functional theory (DFT) calculations confirm its optimized geometry, electronic absorption and frontier molecular orbital distributions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

When quenched with liquid N-2, a room temperature liquid, 4-fluorobenzoyl chloride, generates a new crystalline form that appears to be polytypic to the previously reported form. The structural and energetic correlations between these forms trace a crystallization pathway of the compound.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We demonstrate here that supramolecular interactions enhance the sensitivity towards detection of electron-deficient nitro-aromatic compounds (NACs) over discrete analogues. NACs are the most commonly used explosive ingredients and are common constituents of many unexploded landmines used during World WarII. In this study, we have synthesised a series of pyrene-based polycarboxylic acids along with their corresponding discrete esters. Due to the electron richness and the fluorescent behaviour of the pyrene moiety, all the compounds act as sensors for electron-deficient NACs through a fluorescence quenching mechanism. A Stern-Volmer quenching constant determination revealed that the carboxylic acids are more sensitive than the corresponding esters towards NACs in solution. The high sensitivity of the acids was attributed to supramolecular polymer formation through hydrogen bonding in the case of the acids, and the enhancement mechanism is based on an exciton energy migration upon excitation along the hydrogen-bond backbone. The presence of intermolecular hydrogen bonding in the acids in solution was established by solvent-dependent fluorescence studies and dynamic light scattering (DLS) experiments. In addition, the importance of intermolecular hydrogen bonds in solid-state sensing was further explored by scanning tunnelling microscopy (STM) experiments at the liquid-solid interface, in which structures of self-assembled monolayer of the acids and the corresponding esters were compared. The sensitivity tests revealed that these supramolecular sensors can even detect picric acid and trinitrotoluene in solution at levels as low as parts per trillion (ppt), which is much below the recommended permissible level of these constituents in drinking water.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The reaction between 4,4'-sulfonyldibenzoic acid (H(2)SDBA) and manganese under mild conditions resulted in the isolation of two new three-dimensional compounds, Mn-4(C14H8O6S)(4)(DMA)(2)]center dot 3DMA, I, and Mn-3(C14H8O6S)(3)(DMA)(2)(MeOH)]center dot DMA, IIa. Both structures have Mn-3 trimer oxo cluster units. While the Mn-3 oxoclusters are connected through octahedral manganese forming one-dimensional Mn-O-Mn chains in I, the Mn-3 units are isolated in IIa. The SDBA units connect the Mn-O-Mn chains and the Mn-3 clusters giving rise to the three-dimensional structure. Both compounds have coordinated and free solvent molecules. In IIa, two different solvent molecules are coordinated, of which one solvent can be reversibly exchanged by a variety of other similar solvents via a solvent-mediated single crystal to single crystal (SCSC) transformation. The free lattice DMA solvent molecules in I can be exchanged by water molecules resulting in hydrophilic channels. Proton conductivity studies on I reveals a high proton mobility with conductivity values of similar to 0.87 x 10(-3) Omega(-1) cm(-1) at 34 degrees C and 98% RH, which is comparable to some of the good proton conductivity values observed in inorganic coordination polymers. We have also shown structural transformation of I to IIa through a possible dissolution and recrystallization pathway. In addition, both I and IIa appear to transform to two other manganese compounds H3O]Mn-3(mu(3)-OH)(C14H8O6S)(3)(H2O)](DMF)(5) and H3O](2)Mn-7(mu 3-OH)(4)(C14H8O6S)(6)(H2O)(4)](H2O)(2)(DMF)(8) under suitable reaction conditions. We have partially substituted Co in place of Mn in the Mn-3 trimer clusters forming CoMn2(C14H8O6S)(3)(DMA)(2)(EtOH)]center dot DMA, III, a structure that is closely related to IIa. All the compounds reveal antiferromagnetic behavior. On heating, the cobalt substituted phase (compound III) forms a CoMn2O4 spinel phase with particle sizes in the nanometer range.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Blends between the widely used thermoset resin, epoxy, and the most abundant organic material, natural cellulose are demonstrated for the first time. The blending modification induced by charge transfer complexes using a room temperature ionic liquid, leads to the formation of thermally flexible thermoset materials. The blend materials containing low concentrations of cellulose were optically transparent which indicates the miscibility at these compositions. We observed the existence of intermolecular hydrogen bonding between epoxy and cellulose in the presence of the ionic liquid, leading to partial miscibility between these two polymers. The addition of cellulose improves the tensile mechanical properties of epoxy. This study reveals the use of ionic liquids as a compatible processing medium to prepare epoxy thermosets modified with natural polymers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The electron recombination lifetime in a sensitized semiconductor assembly is greatly influenced by the crystal structure and geometric form of the light-harvesting semiconductor nanocrystal. When such light harvesters with varying structural characteristics are configured in a photoanode, its interface with the electrolyte becomes equally important and directly influences the photovoltaic efficiency. We have systematically probed here the influence of nanocrystal crystallographic structure and shape on the electron recombination lifetime and its eventual influence on the light to electricity conversion efficiency of a liquid junction semiconductor sensitized solar cell. The light-harvesting cadmium sulfide (CdS) nanocrystals of distinctly different and controlled shapes are obtained using a novel and simple liquid gas phase synthesis method performed at different temperatures involving very short reaction times. High resolution synchrotron X-ray diffraction and spectroscopic studies respectively exhibit different crystallographic phase content and optical properties. When assembled on a mesoscopic TiO2 film by a linker molecule, they exhibit remarkable variation in electron recombination lifetime by 1 order of magnitude, as determined by ac-impedance spectroscopy. This also drastically affects the photovoltaic efficiency of the differently shaped nanocrystal sensitized solar cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The electron recombination lifetime in a sensitized semiconductor assembly is greatly influenced by the crystal structure and geometric form of the light-harvesting semiconductor nanocrystal. When such light harvesters with varying structural characteristics are configured in a photoanode, its interface with the electrolyte becomes equally important and directly influences the photovoltaic efficiency. We have systematically probed here the influence of nanocrystal crystallographic structure and shape on the electron recombination lifetime and its eventual influence on the light to electricity conversion efficiency of a liquid junction semiconductor sensitized solar cell. The light-harvesting cadmium sulfide (CdS) nanocrystals of distinctly different and controlled shapes are obtained using a novel and simple liquid gas phase synthesis method performed at different temperatures involving very short reaction times. High resolution synchrotron X-ray diffraction and spectroscopic studies respectively exhibit different crystallographic phase content and optical properties. When assembled on a mesoscopic TiO2 film by a linker molecule, they exhibit remarkable variation in electron recombination lifetime by 1 order of magnitude, as determined by ac-impedance spectroscopy. This also drastically affects the photovoltaic efficiency of the differently shaped nanocrystal sensitized solar cells.