128 resultados para Linear boundary value control problems


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many optimal control problems are characterized by their multiple performance measures that are often noncommensurable and competing with each other. The presence of multiple objectives in a problem usually give rise to a set of optimal solutions, largely known as Pareto-optimal solutions. Evolutionary algorithms have been recognized to be well suited for multi-objective optimization because of their capability to evolve a set of nondominated solutions distributed along the Pareto front. This has led to the development of many evolutionary multi-objective optimization algorithms among which Nondominated Sorting Genetic Algorithm (NSGA and its enhanced version NSGA-II) has been found effective in solving a wide variety of problems. Recently, we reported a genetic algorithm based technique for solving dynamic single-objective optimization problems, with single as well as multiple control variables, that appear in fed-batch bioreactor applications. The purpose of this study is to extend this methodology for solution of multi-objective optimal control problems under the framework of NSGA-II. The applicability of the technique is illustrated by solving two optimal control problems, taken from literature, which have usually been solved by several methods as single-objective dynamic optimization problems. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper reports on the investigations of laminar free convection heat transfer from vertical cylinders and wires whose surface temperature varies along the height according to the relation TW - T∞ = Nxn. The set of boundary layer partial differential equations and the boundary conditions are transformed to a more amenable form and solved by the process of successive substitution. Numerical solutions of the first approximated equations (two-point nonlinear boundary value type of ordinary differential equations) bring about the major contribution to the problem (about 95%), as seen from the solutions of higher approximations. The results reduce to those for the isothermal case when n=0. Criteria for classifying the cylinders into three broad categories, viz., short cylinders, long cylinders and wires, have been developed. For all values of n the same criteria hold. Heat transfer correlations obtained for short cylinders (which coincide with those of flat plates) are checked with those available in the literature. Heat transfer and fluid flow correlations are developed for all the regimes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Motivated by certain situations in manufacturing systems and communication networks, we look into the problem of maximizing the profit in a queueing system with linear reward and cost structure and having a choice of selecting the streams of Poisson arrivals according to an independent Markov chain. We view the system as a MMPP/GI/1 queue and seek to maximize the profits by optimally choosing the stationary probabilities of the modulating Markov chain. We consider two formulations of the optimization problem. The first one (which we call the PUT problem) seeks to maximize the profit per unit time whereas the second one considers the maximization of the profit per accepted customer (the PAC problem). In each of these formulations, we explore three separate problems. In the first one, the constraints come from bounding the utilization of an infinite capacity server; in the second one the constraints arise from bounding the mean queue length of the same queue; and in the third one the finite capacity of the buffer reflect as a set of constraints. In the problems bounding the utilization factor of the queue, the solutions are given by essentially linear programs, while the problems with mean queue length constraints are linear programs if the service is exponentially distributed. The problems modeling the finite capacity queue are non-convex programs for which global maxima can be found. There is a rich relationship between the solutions of the PUT and PAC problems. In particular, the PUT solutions always make the server work at a utilization factor that is no less than that of the PAC solutions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The probability distribution of the eigenvalues of a second-order stochastic boundary value problem is considered. The solution is characterized in terms of the zeros of an associated initial value problem. It is further shown that the probability distribution is related to the solution of a first-order nonlinear stochastic differential equation. Solutions of this equation based on the theory of Markov processes and also on the closure approximation are presented. A string with stochastic mass distribution is considered as an example for numerical work. The theoretical probability distribution functions are compared with digital simulation results. The comparison is found to be reasonably good.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A mixed boundary value problem associated with the diffusion equation that involves the physical problem of cooling of an infinite parallel-sided composite slab in a two-fluid medium, is solved completely by using the Wiener-Hopf technique. An analytical solution is derived for the temperature distribution at the quench fronts being created by two different layers of cold fluids having different cooling abilities moving on the upper surface of the slab at constant speedv. Simple expressions are derived for the values of the sputtering temperatures of the slab at the points of contact with the respective layers, assuming the front layer of the fluid to be of finite width and the back layer of infinite extent. The main problem is solved through a three-part Wiener-Hopf problem of a special type and the numerical results under certain special circumstances are obtained and presented in the form of a table.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A direct transform technique is applied to the initial and boundary value problem involving diffraction of a cylindrical pulse by a half plane, on which impedance type of boundary conditions must be met by the total field. The solution to the time harmonic incident plane wave is deduced as a particular case of the general time-dependent problem considered here and we avoid the Wiener–Hopf technique which leads to very complicated factorization and which masks the role of the impedance factor Z′ (a small quantity) in the expression for the scattered field.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The collapse of a spherical (cylindrical) cavity in air is studied analytically. The global solution for the entire domain between the sound front, separating the undisturbed and the disturbed gas, and the vacuum front is constructed in the form of infinite series in time with coefficients depending on an ldquoappropriaterdquo similarity variable. At timet=0+, the exact planar solution for a uniformly moving cavity is assumed to hold. The global analytic solution of this initial boundary value problem is found until the collapse time (=(gamma–1)/2) for gamma le 1+(2/(1+v)), wherev=1 for cylindrical geometry, andv=2 for spherical geometry. For higher values of gamma, the solution series diverge at timet — 2(beta–1)/ (v(1+beta)+(1–beta)2) where beta=2/(gamma–1). A close agreement is found in the prediction of qualitative features of analytic solution and numerical results of Thomaset al. [1].

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper addresses the problem of determining an optimal (shortest) path in three dimensional space for a constant speed and turn-rate constrained aerial vehicle, that would enable the vehicle to converge to a rectilinear path, starting from any arbitrary initial position and orientation. Based on 3D geometry, we propose an optimal and also a suboptimal path planning approach. Unlike the existing numerical methods which are computationally intensive, this optimal geometrical method generates an optimal solution in lesser time. The suboptimal solution approach is comparatively more efficient and gives a solution that is very close to the optimal one. Due to its simplicity and low computational requirements this approach can be implemented on an aerial vehicle with constrained turn radius to reach a straight line with a prescribed orientation as required in several applications. But, if the distance between the initial point and the straight line to be followed along the vertical axis is high, then the generated path may not be flyable for an aerial vehicle with limited range of flight path angle and we resort to a numerical method for obtaining the optimal solution. The numerical method used here for simulation is based on multiple shooting and is found to be comparatively more efficient than other methods for solving such two point boundary value problem.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An exact three-dimensional elasticity solution has been obtained for an infinitely long, thick transversely isotropic circular cylindrical shell panel, simply supported along the longitudinal edges and subjected to a radial patch load. Using a set of three displacement functions, the boundary value problem is reduced to Bessel's differential equation. Numerical results are presented for different thickness to mean radius ratios and semicentral angles of the shell panel. Classical and first-order shear deformation orthotropic shell theories have been examined in comparison with the present elasticity solution.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The assignment of tasks to multiple resources becomes an interesting game theoretic problem, when both the task owner and the resources are strategic. In the classical, nonstrategic setting, where the states of the tasks and resources are observable by the controller, this problem is that of finding an optimal policy for a Markov decision process (MDP). When the states are held by strategic agents, the problem of an efficient task allocation extends beyond that of solving an MDP and becomes that of designing a mechanism. Motivated by this fact, we propose a general mechanism which decides on an allocation rule for the tasks and resources and a payment rule to incentivize agents' participation and truthful reports. In contrast to related dynamic strategic control problems studied in recent literature, the problem studied here has interdependent values: the benefit of an allocation to the task owner is not simply a function of the characteristics of the task itself and the allocation, but also of the state of the resources. We introduce a dynamic extension of Mezzetti's two phase mechanism for interdependent valuations. In this changed setting, the proposed dynamic mechanism is efficient, within period ex-post incentive compatible, and within period ex-post individually rational.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new `generalized model predictive static programming (G-MPSP)' technique is presented in this paper in the continuous time framework for rapidly solving a class of finite-horizon nonlinear optimal control problems with hard terminal constraints. A key feature of the technique is backward propagation of a small-dimensional weight matrix dynamics, using which the control history gets updated. This feature, as well as the fact that it leads to a static optimization problem, are the reasons for its high computational efficiency. It has been shown that under Euler integration, it is equivalent to the existing model predictive static programming technique, which operates on a discrete-time approximation of the problem. Performance of the proposed technique is demonstrated by solving a challenging three-dimensional impact angle constrained missile guidance problem. The problem demands that the missile must meet constraints on both azimuth and elevation angles in addition to achieving near zero miss distance, while minimizing the lateral acceleration demand throughout its flight path. Both stationary and maneuvering ground targets are considered in the simulation studies. Effectiveness of the proposed guidance has been verified by considering first order autopilot lag as well as various target maneuvers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of insoluble surfactants on the instability of a two-layer film flow down an inclined plane is investigated based on the Orr-Sommerfeld boundary value problem. The study, focusing on Stokes flow P. Gao and X.-Y. Lu, ``Effect of surfactants on the inertialess instability of a two-layer film flow,'' J. Fluid Mech. 591, 495-507 (2007)], is further extended by including the inertial effect. The surface mode is recognized along with the interface mode. The initial growth rate corresponding to the interface mode accelerates at sufficiently long-wave regime in the presence of surface surfactant. However, the maximum growth rate corresponding to both interface and surface modes decelerates in the presence of surface surfactant when the upper layer is more viscous than the lower layer. On the other hand, when the upper layer is less viscous than the lower layer, a new interfacial instability develops due to the inertial effect and becomes weaker in the presence of interfacial surfactant. In the limit of negligible surface and interfacial tensions, respectively, two successive peaks of temporal growth rate appear in the long-wave and short-wave regimes when the interface mode is analyzed. However, in the case of the surface mode, only the long-wave peak appears. (C) 2014 AIP Publishing LLC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new generalized model predictive static programming technique is presented for rapidly solving a class of finite-horizon nonlinear optimal control problems with hard terminal constraints. Two key features for its high computational efficiency include one-time backward integration of a small-dimensional weighting matrix dynamics, followed bya static optimization formulation that requires only a static Lagrange multiplier to update the control history. It turns out that under Euler integration and rectangular approximation of finite integrals it is equivalent to the existing model predictive static programming technique. In addition to the benchmark double integrator problem, usefulness of the proposed technique is demonstrated by solving a three-dimensional angle-constrained guidance problem for an air-to-ground missile, which demands that the missile must meet constraints on both azimuth and elevation angles at the impact point in addition to achieving near-zero miss distance, while minimizing the lateral acceleration demand throughout its flight path. Simulation studies include maneuvering ground targets along with a first-order autopilot lag. Comparison studies with classical augmented proportional navigation guidance and modern general explicit guidance lead to the conclusion that the proposed guidance is superior to both and has a larger capture region as well.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we consider a singularly perturbed boundary-value problem for fourth-order ordinary differential equation (ODE) whose highest-order derivative is multiplied by a small perturbation parameter. To solve this ODE, we transform the differential equation into a coupled system of two singularly perturbed ODEs. The classical central difference scheme is used to discretize the system of ODEs on a nonuniform mesh which is generated by equidistribution of a positive monitor function. We have shown that the proposed technique provides first-order accuracy independent of the perturbation parameter. Numerical experiments are provided to validate the theoretical results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work deals with the homogenization of an initial- and boundary-value problem for the doubly-nonlinear system D(t)w - del.(z) over right arrow = g(x, t, x/epsilon) (0.1) w is an element of alpha(u, x/epsilon) (0.2) (z) over right arrow is an element of (gamma) over right arrow (del u, x/epsilon) (0.3) Here epsilon is a positive parameter; alpha and (gamma) over right arrow are maximal monotone with respect to the first variable and periodic with respect to the second one. The inclusions (0.2) and (0.3) are here formulated as null-minimization principles, via the theory of Fitzpatrick MR 1009594]. As epsilon -> 0, a two-scale formulation is derived via Nguetseng's notion of two-scale convergence, and a (single-scale) homogenized problem is then retrieved. (C) 2015 Elsevier Ltd. All rights reserved.