346 resultados para Light-dependent
Resumo:
Activation of macrophages by interferon gamma (IFN- ) and the subsequent production of nitric oxide (NO) are critical for the host defence against Salmonella enterica serovar Typhimurium infection. We report here the inhibition of IFN- -induced NO production in RAW264.7 macrophages infected with wild-type Salmonella. This phenomenon was shown to be dependent on the nirC gene, which encodes a potential nitrite transporter. We observed a higher NO output from IFN- -treated macrophages infected with a nirC mutant of Salmonella. The nirC mutant also showed significantly decreased intracellular proliferation in a NO-dependent manner in activated RAW264.7 macrophages and in liver, spleen and secondary lymph nodes of mice, which was restored by complementing the gene in trans. Under acidified nitrite stress, a twofold more pronounced NO-mediated repression of SPI2 was observed in the nirC knockout strain compared to the wild-type. This enhanced SPI2 repression in the nirC knockout led to a higher level of STAT-1 phosphorylation and inducible nitric oxide synthase (iNOS) expression than seen with the wild-type strain. In iNOS knockout mice, the organ load of the nirC knockout strain was similar to that of the wild-type strain, indicating that the mutant is exclusively sensitive to the host nitrosative stress. Taken together, these results reveal that intracellular Salmonella evade killing in activated macrophages by downregulating IFN- -induced NO production, and they highlight the critical role of nirC as a virulence gene.
Resumo:
Using the method of infinitesimal transformations, a 6-parameter family of exact solutions describing nonlinear sheared flows with a free surface are found. These solutions are a hybrid between the earlier self-propagating simple wave solutions of Freeman, and decaying solutions of Sachdev. Simple wave solutions are also derived via the method of infinitesimal transformations. Incomplete beta functions seem to characterize these (nonlinear) sheared flows in the absence of critical levels.
Resumo:
Background and Objective: Arecoline, an arecanut alkaloid present in the saliva of betel quid chewers, has been implicated in the pathogenesis of a variety of inflammatory oral diseases, including oral submucous fibrosis and periodontitis. To understand the molecular b asis of arecoline action in epithelial changes associated with these diseases, we investigated the effects of arecoline on human keratinocytes with respect to cell growth regulation and the expression of stress-responsive genes.Material and Methods:Human keratinocyte cells (of the HaCaT cell line) were treated with arecoline, following which cell viability was assessed using the Trypan Blue dye-exclusion assay, cell growth and proliferation were analyzed using the MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) and 5-bromo-2-deoxyuridine incorporation assays, cell cycle arrest and generation of reactive oxygen species were examined using flow cytometry, and gene expression changes were investigated using the reverse transcription-polymerase chain reaction technique. The role of oxidative stress, muscarinic acetylcholine receptor and mitogen-activated protein kinase (MAPK) pathways were studied using specific inhibitors. Western blot analysis was performed to study p38 MAPK activation.Results:Arecoline induced the generation of reactive oxygen species and cell cycle arrest at the G1/G0 phase in HaCaT cells without affecting the expression of p21/Cip1. Arecoline-induced epithelial cell death at higher concentrations was caused by oxidative trauma without eliciting apoptosis. Sublethal concentrations of arecoline upregulated the expression of the following stress-responsive genes: heme oxygenase-1; ferritin light chain; glucose-6-phosphate dehydrogenase; glutamate-cysteine ligase catalytic subunit; and glutathione reductase.Additionally, there was a dose-dependent induction of interleukin-1alfa mRNA by arecoline via oxidative stress and p38 MAPK activation. Conclusion:our data highlight the role of oxidative stress in arecoline-mediated cell death, gene regulation and inflammatory processes in human keratinocytes.
Resumo:
A class of exact, self-similar, time-dependent solutions describing free surface flows under gravity is found which extends the self-propagating class of solutions discovered earlier by Freeman (1972) to those which decay with time.
Resumo:
Spatial dimensionality affects the degree of confinement when an electron-hole pair is squeezed from one or more dimensions approaching the bulk exciton Bohr radius (alpha(B)) limit. The etectron-hole interaction in zero-dimensional (0D) dots, one-dimensional (1D) rods/wires, and two-dimensional (2D) wells/sheets should be enhanced by the increase in confinement dimensions in the order 0D > 1D > 2D. We report the controlled synthesis of PbS nanomateriats with 0D, 1D, and 2D forms retaining at least one dimension in the strongly confined regime far below alpha(B) (similar to 10 nm for PbS) and provide evidence through varying the exciton-phonon coupling strength that the degree of confinement is systematically weakened by the loss of confinement dimension. Geometry variations show distinguishable far-field optical polarizations, which could find useful applications in polarization-sensitive devices.
Resumo:
The usual assumption made in time minimising transportation problem is that the time for transporting a positive amount in a route is independent of the actual amount transported in that route. In this paper we make a more general and natural assumption that the time depends on the actual amount transported. We assume that the time function for each route is an increasing piecewise constant function. Four algorithms - (1) a threshold algorithm, (2) an upper bounding technique, (3) a primal dual approach, and (4) a branch and bound algorithm - are presented to solve the given problem. A method is also given to compute the minimum bottle-neck shipment corresponding to the optimal time. A numerical example is solved illustrating the algorithms presented in this paper.
Resumo:
Porphyrins appended with crown ether moieties function as efficient uncouplesrs of oxidative phorphorylation in rat liver mitochondria. Permeation of these highly organized porphyrins decrease the respiratory coefficient index (RCI) values. Lowering of the RCI values parallels the number of K+ chelating crown ether groups attached to the porphyrins. The inhibitory effect upon the oxidative phorphorylation reaction depends on the nature of divalent metal ions, VO, Co, Cu and Zn in the porphyrin cavity and related to their relative tendency to complex intracellular K+ ions.
Resumo:
Brillouin scattering by one-phonon-two-magnon interacting excitations in ferromagnetic dielectrics is discussed. The basic light scattering mechanism is taken to be the modulation of the density-dependent optical dielectric polarizability of the medium by the dynamic strain field generated by the longitudinal acoustic (LA) phonons. The renormalization effects arising from the scattering of phonons by the two-magnon creation-annihilation processes have, however, been taken into account. Via these interactions, the Brillouin components corresponding to the two-magnon excitations are reflected indirectly in the spectrum of the phonon scattered light as line-broadening of the otherwise relatively sharp Brillouin doublet. The present mechanism is shown to be dominant in a clean saturated ferromagnetic dielectric with large magneto-strictive coupling constant, and with the magnetic ions in the orbitally quenched states. Following the linear response theory, an expression has been derived for the spectral density of the scattered light as a function of temperature, scattering angle, and the strength of the externally applied magnetic field. Some estimates are given for the line-width and line-shift of the Brillouin components for certain typical choice of parameters involved. The results are discussed in relation to some available calculations on the ultrasonic attenuation in ferromagnetic insulators at low temperatures.
Resumo:
Based upon a stereochemical guideline, two topologically distinct types of helicalduplexes have been deduced for a polynucleotide duplex with alternating purine pyrimidine sequence (PAPP): (a) right-handed uniform (RU) helix and (b) left-handed zig-zag (LZ) helix. Both structures have trinucleoside diphosphate as the basic unit wherein the purine pyrimidine fragment has a different conformation from the pyrimidine-purine fragment. Thus, RU and LZ helices represent two different classes of sequence-dependent molecular conformations for PAPP. The conformationalf eatures of an RU helix of PAPP in B-form and three LZ-helices for B-, D- and Z-forms are discussed.
Time-dependent flows of rotating and stratified fluids in geometries with non-uniform cross-sections
Resumo:
Unsteady rotating and stratified flows in geometries with non-uniform cross-sections are investigated under Oseen approximation using Laplace transform technique. The solutions are obtained in closed form and they reveal that the flow remains oscillatory even after infinitely large time. The existence of inertial waves propagating in both positive and negative directions of the flow is observed. When the Rossby or Froude number is close to a certain infinite set of critical values the blocking and back flow occur and the flow pattern becomes more and more complicated with increasing number of stagnant zones when each critical value is crossed. The analogy that is observed in the solutions for rotating and stratified flows is also discussed.
Resumo:
A model (NADH-phenazine methosulfate-O2) formally similar to pyridine nucleotide-dependent flavoprotein hydroxylases catalyzed the hydroxylation of several aromatic compounds. The hydroxylation was maximal at acid pH and was inhibited by ovine Superoxide dismutase, suggesting that perhydroxyl radicals might be intermediates in this process. The stoichiometry of the reaction indicated that a univalent reduction of oxygen was occurring. The correlation between the concentration of semiquinone and hydroxylation, and the inhibition of hydroxylation by ethanol which inhibited semiquinone oxidation, suggested the involvement of phenazine methosulfate-semiquinone. Activation of hydroxylation by Fe3+ and Cu2+ supported the contention that univalently reduced species of oxygen was involved in hydroxylation. Catalase was without effect on the hydroxylation by the model, ruling out H2O2 as an intermediate. A reaction sequence, involving a two-electron reduction of phenazine methosulfate to reduced phenazine methosulfate followed by disproportionation with phenazine methosulfate to generate the semiquinone, was proposed. The semiquinone could donate an electron to O2 to generate O2 which could be subsequently protonated to form the perhydroxyl radical.
Resumo:
In many instances we find it advantageous to display a quantum optical density matrix as a generalized statistical ensemble of coherent wave fields. The weight functions involved in these constructions turn out to belong to a family of distributions, not always smooth functions. In this paper we investigate this question anew and show how it is related to the problem of expanding an arbitrary state in terms of an overcomplete subfamily of the overcomplete set of coherent states. This provides a relatively transparent derivation of the optical equivalence theorem. An interesting by-product is the discovery of a new class of discrete diagonal representations.
Resumo:
Human CGI-58 (for comparative gene identification-58) and YLR099c, encoding Ict1p in Saccharomyces cerevisiae, have recently been identified as acyl-CoA-dependent lysophosphatidic acid acyltransferases. Sequence database searches for CGI-58 like proteins in Arabidopsis (Arabidopsis thaliana) revealed 24 proteins with At4g24160, a member of the alpha/beta-hydrolase family of proteins being the closest homolog. At4g24160 contains three motifs that are conserved across the plant species: a GXSXG lipase motif, a HX4D acyltransferase motif, and V(X)(3)HGF, a probable lipid binding motif. Dendrogram analysis of yeast ICT1, CGI-58, and At4g24160 placed these three polypeptides in the same group. Here, we describe and characterize At4g24160 as, to our knowledge, the first soluble lysophosphatidic acid acyltransferase in plants. A lipidomics approach revealed that At4g24160 has additional triacylglycerol lipase and phosphatidylcholine hydrolyzing enzymatic activities. These data establish At4g24160, a protein with a previously unknown function, as an enzyme that might play a pivotal role in maintaining the lipid homeostasis in plants by regulating both phospholipid and neutral lipid levels.
Resumo:
The electrical and optical response of a field-effect device comprising a network of semiconductor-enriched single-wall carbon nanotubes, gated with sodium chloride solution is investigated. Field-effect is demonstrated in a device that uses facile fabrication techniques along with a small-ion as the gate electrolyte-and this is accomplished as a result of the semiconductor enhancement of the tubes. The optical transparency and electrical resistance of the device are modulated with gate voltage. A time-response study of the modulation of optical transparency and electrical resistance upon application of gate voltage suggests the percolative charge transport in the network. Also the ac response in the network is investigated as a function of frequency and temperature down to 5 K. An empirical relation between onset frequency and temperature is determined.