123 resultados para Less favoured regions
Resumo:
This report deals with a study of the properties of internal cavities of dendritic macromolecules that are capable Of encapsulating and mediating photoreactions of guest molecules. The internal cavity structures of dendrimers are determined by the interfacial regions between the aqueous exterior and hydrocarbon like interior constituted by the linkers that connect symmetrically sited branch points constituting the dendrimer and head groups that cap the dendrimers. Phloroglucinol-based poly(alkyl aryl ether) dendrimers constituted with a homologous series of alkyl linkers were undertaken for the current study. Twelve dendrimers within first, second, and third generations, having ethyl, n-propyl, n-butyl, and n-pentyl groups as the linkers and hydroxyl groups at peripheries in each generation, were synthesized. Encapsulation of pyrene and coumarins by aqueous basic solutions of dendrimers were monitored-by UV-vis and fluorescence spectroscopies, which showed that a lower generation dendrimer with an optimal alkyl linker presented better encapsulation abilities than a higher generation dendrimer. Norrish type I photoreaction of dibenzyl ketone was carried out within the above: series of dendrimers to probe their abilities to hold guests and reactive inthermediate radical pairs within themselves. The extent of cage effect from the series of third generation dendrimers was observed to be higher with dendrimers having an n-pentyl group as the linker.
Resumo:
Geometry and energy of argon clusters confined in zeolite NaCaA are compared with those of free clusters. Results indicate the possible existence of magic numbers among the confined clusters. Spectra obtained from instantaneous normal mode analysis of free and confined clusters give a larger percentage of imaginary frequencies for the latter indicating that the confined cluster atoms populate the saddle points of the potential energy surface significantly. The variation of the percentage of imaginary frequencies with temperature during melting is akin to the variation of other properties. It is shown that confined clusters might exhibit inverse surface melting, unlike medium-to-large-sized free clusters that exhibit surface melting. Configurational-bias Monte Carte (CBMC) simulations of n-alkanes in zeolites Y and A are reported. CBMC method gives reliable estimates of the properties relating to the conformation of molecules. Changes in the conformational properties of n-butane and other longer n-alkanes such as n-hexane and n-heptane when they are confined in different zeolites are presented. The changes in the conformational properties of n-butane and n-hexane with temperature and concentration is discussed. In general, in zeolite Y as well as A, there is significant enhancement of the gauche population as compared to the pure unconfined fluid.
Resumo:
The unsteady three-dimensional stagnation point Bow of a viscoelastic fluid has been studied. Both nodal and saddle point regions of How have been considered. The unsteadiness in the Bow field is caused by the free stream velocity which varies arbitrarily with time. The governing boundary layer equations represented by a system of nonlinear partial differential equations have been solved numerically using a finite-difference scheme along with the quasilinearization technique in the nodal point region and a finite-difference scheme in combination with the parametric differentiation technique in the saddle point region. The skin friction coefficients for the viscoelastic fluid are found to be significantly less than those of the Newtonian fluid. The skin friction and heat transfer increase due to suction and reduce due to injection. The heat transfer at the wall increases with the Prandtl number. There is a flow reversal in the y-component of the velocity in the saddle point region. The absolute value of c (<<<0) for which reversal takes place is less than that of the Newtonian fluid. (C) 1997 Elsevier Science Ltd.
Resumo:
Dikpati and Choudhuri (1993, 1995) developed a model for the poleward migration of the weak diffuse magnetic field on the Sun's surface. This field was identified with the poloidal component produced by the solar dynamo operating at the base of the convection zone, and its evolution was studied by considering the effects of meridional circulation and turbulent diffusion. The earlier model is extended in this paper by incorporating the flux from, the decay of tilted active regions near the solar surface as an additional source of the poloidal field. This extended model can now explain various low-latitude features in the time-latitude diagram of the weak diffuse fields. These low-latitude features could not be accounted for in the earlier model, which was very successful in modeling the behavior at high latitudes. The time-latitude diagrams show that regions of a particular polarity often have 'tongues' of opposite polarity. Such tongues can be produced in the theoretical model by incorporating fluctuations in the source term arising out of the decaying active regions.
Resumo:
Microwave (MW) thawing of 2D frozen cylinders exposed to uniform plane waves from one face, is modeled using the effective heat capacity formulation with the MW power obtained from the electric field equations. Computations are illustrated for tylose (23% methyl cellulose gel) which melts over a range of temperatures giving rise to a mushy zone. Within the mushy region the dielectric properties are functions of the liquid volume fraction. The resulting coupled, time dependent non-linear equations are solved using the Galerkin finite element method with a fixed mesh. Our method efficiently captures the multiple connected thawed domains that arise due to the penetration of MWs in the sample. For a cylinder of diameter D, the two length scales that control the thawing dynamics are D/D-p and D/lambda(m), where D-p and lambda(m) are the penetration depth and wavelength of radiation in the sample respectively. For D/D-p, D/lambda(m) much less than 1 power absorption is uniform and thawing occurs almost simultaneously across the sample (Regime I). For D/D-p much greater than 1 thawing is seen to occur from the incident face, since the power decays exponentially into the sample (Regime III). At intermediate values, 0.2 < D/D-p, D/lambda(m) < 2.0 (Regime II) thawing occurs from the unexposed face at smaller diameters, from both faces at intermediate diameters and from the exposed and central regions at larger diameters. Average power absorption during thawing indicates a monotonic rise in Regime I and a monotonic decrease in Regime III. Local maxima in the average power observed for samples in Regime II are due to internal resonances within the sample. Thawing time increases monotonically with sample diameter and temperature gradients in the sample generally increase from Regime I to Regime III. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
In the mean, bipolar active regions are oriented nearly toroidally, according to Hale's polarity law, with a latitude-dependent tilt known as Joy's Law. The tilt angles of individual active regions deviate from this mean behavior and change over time. It has been found that on average the change is toward the mean angle at a rate characteristic of 4.37 days (Howard, 1996). We show that this orientational relaxation is consistent with the standard model of flux tube emergence from a deep dynamo layer. Under this scenario Joy's law results from the Coriolis effect on the rising flux tube (D'Silva and Choudhuri, 1993), and departures from it result from turbulent buffeting of the tubes (Longcope and Fisher, 1996). We show that relaxation toward Joy's angle occurs because the turbulent perturbations relax on shorter time scales than the perturbations from the Coriolis force. The turbulent perturbations relax more rapidly because they are localized to the topmost portion of the convection zone while the Coriolis perturbations are more widely distributed. If a fully-developed active region remains connected to the strong toroidal magnetic field at the base of the convection zone, its tilt will eventually disappear, leaving it aligned perfectly toroidally. On the other hand, if the flux becomes disconnected from the toroidal field the bipole will assume a tilt indicative of the location of disconnection. We compare models which are connected and disconnected from the toroidal field. Only those disconnected at points very deep in the convection zone a-re consistent with observed time scale of orientational relaxation.
Resumo:
Mineral dust constitutes the single largest contributor of natural aerosols over continents. The first step towards separating natural aerosol radiative impact from its anthropogenic counterparts over continents is to gather information on dust aerosols. The infrared (IR) radiance (10.5-12.5 mu m) acquired from the Kalpana-I satellite (similar to 8-km resolution) was used to retrieve regional characteristics of dust aerosols over the Afro-Asian region during the winter of 2004, coinciding with a national aerosol campaign. Here, we used aerosol-induced IR radiance depression as an index of dust load. The regional distribution of dust over various arid and semi-arid regions of India and adjacent continents has been estimated, and these data in conjunction with regional maps of column aerosol optical depth (AOD) are used to infer anthropogenic aerosol fraction. Surprisingly, even over desert locations in India and Saudi Arabia, the anthropogenic fraction was relatively high (similar to 0.3 to 0.4) and the regionally averaged anthropogenic fraction over India was 0.62 +/- 0.06.
Resumo:
SrTiO3:Pr3+,Al3+ phosphor samples with varying ratios of Sr/Ti/Al were prepared by the gel-carbonate method and the mechanism of enhancement of the red photoluminescence intensity therein was investigated. The photoluminescence (PL) spectra of SrTiO3:Pr3+ show both D-1(2) --> H-3(4) and P-3(0) --> H-3(4) emission in the red and blue spectral regions, respectively, with comparable intensity. The emission intensity of D-1(2) --> H-3(4) is drastically enhanced by the incorporation of Al3+ and excess Ti4+ in the compositional range Sr(Ti,Al-y)(O3+3y/2):Pr3+ (0.2 less than or equal to y less than or equal to 0.4) and SrTi1+xAlyO3+z:Pr3+ (0.2 less than or equal to x less than or equal to 0.5; 0.05 less than or equal to y less than or equal to 0.1; z = 2x + 3y/2) with the complete disappearance of the blue band. This cannot be explained by the simple point defect model as the EPR studies do not show any evidence for the presence of electron or hole centers. TEM investigations show the presence of exsolved nanophases of SrAl12O19 and/or TiO2 in the grain boundary region as well as grain interiors as lamellae which, in turn, form the solid-state defects, namely, dislocation networks, stacking faults and crystallographic shear planes whereby the framework of corner shared TiO6 octehedra changes over to edge-sharing TiO5-AlO5 strands as indicated from the Al-27 MAS NMR studies. The presence of transitional nanophases and the associated defects modify the excitation-emission processes by way of formation of electronic sub-levels at 3.40 and 4.43 eV, leading to magnetic-dipole related red emission with enhanced intensity. This is evidenced by the fact that SrAl12O19:Pr3+,Ti4+ shows bright red emission whereas SrAl12O19:Pr3+ does not show red photoluminescence.
Resumo:
A multilevel inverter topology for seven-level space vector generation is proposed in this paper. In this topology, the seven-level structure is realized using two conventional two-level inverters and six capacitor-fed H-bridge cells. It needs only two isolated dc-voltage sources of voltage rating V(dc)/2 where V(dc) is the dc voltage magnitude required by the conventional neutral point clamped (NPC) seven-level topology. The proposed topology is capable of maintaining the H-bridge capacitor voltages at the required level of V(dc)/6 under all operating conditions, covering the entire linear modulation and overmodulation regions, by making use of the switching state redundancies. In the event of any switch failure in H-bridges, this inverter can operate in three-level mode, a feature that enhances the reliability of the drive system. The two-level inverters, which operate at a higher voltage level of V(dc)/2, switch less compared to the H-bridges, which operate at a lower voltage level of V(dc)/6, resulting in switching loss reduction. The experimental verification of the proposed topology is carried out for the entire modulation range, under steady state as well as transient conditions.
Resumo:
Land-use changes influence local biodiversity directly, and also cumulatively, contribute to regional and global changes in natural systems and quality of life. Consequent to these, direct impacts on the natural resources that support the health and integrity of living beings are evident in recent times. The Western Ghats being one of the global biodiversity hotspots, is reeling under a tremendous pressure from human induced changes in terms of developmental projects like hydel or thermal power plants, big dams, mining activities, unplanned agricultural practices,monoculture plantations, illegal timber logging, etc. This has led to the once contiguous forest habitats to be fragmented in patches, which in turn has led to the shrinkage of original habitat for the wildlife, change in the hydrological regime of the catchment, decreased inflow in streams,human-animal conflicts, etc. Under such circumstances, a proper management practice is called for requiring suitable biological indicators to show the impact of these changes, set priority regions and in developing models for conservation planning. Amphibians are regarded as one of the best biological indicators due to their sensitivity to even the slightest changes in the environment and hence they could be used as surrogates in conservation and management practices. They are the predominating vertebrates with a high degree of endemism (78%) in Western Ghats. The present study is an attempt to bring in the impacts of various land-uses on anuran distribution in three river basins. Sampling was carried out for amphibians during all seasons of 2003-2006 in basins of Sharavathi, Aghanashini and Bedthi. There are as many as 46 species in the region, one of which is new to science and nearly 59% of them are endemic to the Western Ghats. They belong to nine families, Dicroglossidae being represented by 14 species,followed by Rhacophoridae (9 species) and Ranidae (5 species). Species richness is high in Sharavathi river basin, with 36 species, followed by Bedthi 33 and Aghanashini 27. The impact of land-use changes, was investigated in the upper catchment of Sharavathi river basin. Species diversity indices, relative abundance values, percentage endemics gave clear indication of differences in each sub-catchment. Karl Pearson’s correlation coefficient (r) was calculated between species richness, endemics, environmental descriptors, land-use classes and fragmentation metrics. Principal component analysis was performed to depict the influence of these variables. Results show that sub-catchments with lesser percentage of forest, low canopy cover, higher amount of agricultural area, low rainfall have low species richness, less endemic species and abundant non-endemic species, whereas endemism, species richness and abundance of endemic species are more in the sub-catchments with high tree density, endemic trees, canopy cover, rainfall and lower amount of agriculture fields. This analysis aided in prioritising regions in the Sharavathi river basin for further conservation measures.
Resumo:
Renewable energy resources are those having a cycling time less than 100 years and are renewed by the nature and their supply exceeds the rate of consumption. Renewable energy systems use resources that are constantly replaced in nature and are usually less polluting. In order to tap the potential of renewable energy sources, there is a need to assess the availability of resources spatially as well as temporally. Geographic Information Systems (GIS) along with Remote Sensing (RS) helps in mapping on spatial and temporal scales of the resources and demand. The spatial database of resource availability and the demand would help in the regional energy planning. This paper discusses the application of geographical information system (GIS) to map the solar potential in Karnataka state, India. Regions suitable for tapping solar energy are mapped on the basis of global solar radiation data, and this analysis provides a picture of the potential. The study identifies that Coastal parts of Karnataka with the higher global solar radiation is ideally suited for harvesting solar energy. The potential analysis reveals that, maximum global solar radiation is in districts such as Uttara Kannada and Dakshina Kannada. Global solar radiation in Uttara Kannada during summer, monsoon and winter are 6.31, 4.40 and 5.48 kWh/sq.m, respectively. Similarly, Dakshina Kannada has 6.16, 3.89 and 5.21 kWh/sq.m during summer, monsoon and winter.
Resumo:
Community-based natural resource management (CBNRM) is the joint management of natural resources by a community based on a community strategy, through a participatory mechanism involving all legitimate stakeholders. The approach is community-based in that the communities managing the resources have the legal rights, the local institutions and the economic incentives to take substantial responsibility for sustained use of these resources. This implies that the community plays an active role in the management of natural resources, not because it asserts sole ownership over them, but because it can claim participation in their management and benefits for practical and technical reasons1–4. This approach emerged as the dominant conservation concept in the late 1970s and early 1980s, of the disillusionment with the developmental state. Governments across South and South East Asia, Africa and Latin America have adopted and implemented CBNRM in various ways, viz. through sectoral programmes such as forestry, irrigation or wildlife management, multisectoral programmes such as watershed development and efforts towards political devolution. In India, the principle of decentralization through ‘gram swaraj’ was introduced by Mahatma Gandhi. The 73rd and 74th constitution amendments in 1992 gave impetus to the decentralized planning at panchayat levels through the creation of a statutory three-level local self-government structure5,6. The strength of this book is that it includes chapters by CBNRM advocates based on six seemingly innovative initiatives being implemented by nongovernmental organizations (NGOs) in ecologically vulnerable regions of South Asia: two in the Himalayas (watershed development programme in Lingmutechhu, Bhuthan and Thalisain tehsil, Paudi Grahwal District, Uttarakhand), three in semi-arid parts of western India (watershed development in Hivre Bazar, Maharashtra and Nathugadh village, Gujarat and water-harvesting structures in Gopalapura, Rajasthan) and one in the flood-plains of the Brahmaputra–Jamuna (Char land, Galibanda and Jamalpur districts, Bangladesh). Watersheds in semi-arid regions fall in the low-rainfall region (500–700 mm) and suffer the vagaries of drought 2–3 years in every five-year cycle. In all these locations, the major occupation is agriculture, most of which is rainfed or dry. The other two cases (in Uttarakhand) fall in the Himalayan region (temperate/sub-temperate climate), which has witnessed extensive deforestation in the last century and is now considered as one of the most vulnerable locations in South Asia. Terraced agriculture is being practised in these locations for a long time. The last case (Gono Chetona) falls in the Brahmaputra–Jamuna charlands which are the most ecologically vulnerable regions in the sub-continent with constantly changing landscape. Agriculture and livestock rearing are the main occupations, and there is substantial seasonal emigration for wage labour by the adult males. River erosion and floods force the people to adopt a semi-migratory lifestyle. The book attempts to analyse the potential as well as limitations of NGOdriven CBNRM endeavours across agroclimatic regions of South Asia with emphasis on four intrinsically linked normative concerns, namely sustainability, livelihood enhancement, equity and demographic decentralization in chapters 2–7. Comparative analysis of these case studies done in chapter 8, highlights the issues that require further research while portraying the strengths and limits of NGO-driven CBNRM. In Hivre Bazar, the post-watershed intervention scenario is such that farmers often grow three crops in a year – kharif bajra, rabi jowar and summer vegetable crops. Productivity has increased in the dry lands due to improvement in soil moisture levels. The revival of johads in Gopalpura has led to the proliferation of wheat and increased productivity. In Lingmuteychhu, productivity gains have also arisen, but more due to the introduction of both local and high-yielding, new varieties as opposed to increased water availability. In the case of Gono Chetona, improvements have come due to diversification of agriculture; for example, the promotion of vegetable gardens. CBNRM interventions in most cases have also led to new avenues of employment and income generation. The synthesis shows that CBNRM efforts have made significant contributions to livelihood enhancement and only limited gains in terms of collective action for sustainable and equitable access to benefits and continuing resource use, and in terms of democratic decentralization, contrary to the objectives of the programme. Livelihood benefits include improvements in availability of livelihood support resources (fuelwood, fodder, drinking water), increased productivity (including diversification of cropping pattern) in agriculture and allied activities, and new sources of livelihood. However, NGO-driven CBNRM has not met its goal of providing ‘alternative’ forms of ‘development’ due to impediments of state policy, short-sighted vision of implementers and confrontation with the socio-ecological reality of the region, which almost always are that of fragmented communities (or communities in flux) with unequal dependence and access to land and other natural resources along with great gender imbalances. Appalling, however, is the general absence of recognition of the importance of and the will to explore practical ways to bring about equitable resource transfer or benefit-sharing and the consequent innovations in this respect that are evident in the pioneering community initiatives such as pani panchayat, etc. Pertaining to the gains on the ecological sustainability front, Hivre Bazar and Thalisain initiatives through active participation of villagers have made significant regeneration of the water table within the village, and mechanisms such as ban on number of bore wells, the regulation of cropping pattern, restrictions on felling of trees and free grazing to ensure that in the future, the groundwater is neither over-exploited nor its recharge capability impaired. Nevertheless, the longterm sustainability of the interventions in the case of Ghoga and Gopalpura initiatives as the focus has been mostly on regeneration of resources, and less on regulating the use of regenerated resources. Further, in Lingmuteychhu and Gono Chetona, the interventions are mainly household-based and the focus has been less explicit on ecological components. The studies demonstrate the livelihood benefits to all of the interventions and significant variation in achievements with reference to sustainability, equity and democratic decentralization depending on the level and extent of community participation apart from the vision of implementers, strategy (or nature of intervention shaped by the question of community formation), the centrality of community formation and also the State policy. Case studies show that the influence of State policy is multi-faceted and often contradictory in nature. This necessitates NGOs to engage with the State in a much more purposeful way than in an ‘autonomous space’. Thus the role of NGOs in CBNRM is complementary, wherein they provide innovative experiments that the State can learn. This helps in achieving the goals of CBNRM through democratic decentralization. The book addresses the vital issues related to natural resource management and interests of the community. Key topics discussed throughout the book are still at the centre of the current debate. This compilation consists of well-written chapters based on rigorous synthesis of CBNRM case studies, which will serve as good references for students, researchers and practitioners in the years to come.
Resumo:
An extension of the supramolecular synthon-based fragment approach (SBFA) method for transferability of multipole charge density parameters to include weak supramolecular synthons is proposed. In particular, the SBFA method is applied to C-H center dot center dot center dot O, C-H center dot center dot center dot F, and F center dot center dot center dot F containing synthons. A high resolution charge density study has been performed on 4-fluorobenzoic acid to build a synthon library for C-H center dot center dot center dot F infinite chain interactions. Libraries for C-H center dot center dot center dot O and F center dot center dot center dot F synthons were taken from earlier work. The SBFA methodology was applied successfully to 2- and 3-fluorobenzoic acids, data sets for which were collected in a routine manner at 100 K, and the modularity of the synthons was demonstrated. Cocrystals of isonicotinamide with all three fluorobenzoic acids were also studied with the SBFA method. The topological analysis of inter- and intramolecular interaction regions was performed using Bader's AIM approach. This study shows that the SBFA method is generally applicable to generate charge density maps using information from multiple intermolecular regions.
Resumo:
The most important objective of the present study was to explain why cationic lipid (CL)-mediated delivery of plasmid DNA (pDNA) is better than that of linear DNA in gene therapy, a question that, until now, has remained unanswered. Herein for the first time we experimentally show that for different types of CLs, pDNA, in contrast to linear DNA, is compacted with a large amount of its counterions, yielding a lower effective negative charge. This feature has been confirmed through a number of physicochemical and biochemical investigations. This is significant for both in vitro and in vivo transfection studies. For an effective DNA transfection, the lower the amount of the CL, the lower is the cytotoxicity. The study also points out that it is absolutely necessary to consider both effective charge ratios between CL and pDNA and effective pDNA charges, which can be determined from physicochemical experiments.