120 resultados para Length scale
Resumo:
A micropolar cohesive damage model for delamination of composites is proposed. The main idea is to embed micropolarity, which brings an additional layer of kinematics through the micro-rotation degrees of freedom within a continuum model to account for the micro-structural effects during delamination. The resulting cohesive model, describing the modified traction separation law, includes micro-rotational jumps in addition to displacement jumps across the interface. The incorporation of micro-rotation requires the model to be supplemented with physically relevant material length scale parameters, whose effects during delamination of modes I and II are brought forth using numerical simulations appropriately supported by experimental evidences. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
Active biological processes like transcription, replication, recombination, DNA repair, and DNA packaging encounter bent DNA. Machineries associated with these processes interact with the DNA at short length (<100 base pair) scale. Thus, the study of elasticity of DNA at such length scale is very important. We use fully atomistic molecular dynamics (MD) simulations along with various theoretical methods to determine elastic properties of dsDNA of different lengths and base sequences. We also study DNA elasticity in nucleosome core particle (NCP) both in the presence and the absence of salt. We determine stretch modulus and persistence length of short dsDNA and nucleosomal DNA from contour length distribution and bend angle distribution, respectively. For short dsDNA, we find that stretch modulus increases with ionic strength while persistence length decreases. Calculated values of stretch modulus and persistence length for DNA are in quantitative agreement with available experimental data. The trend is opposite for NCP DNA. We find that the presence of histone core makes the DNA stiffer and thus making the persistence length 3-4 times higher than the bare DNA. Similarly, we also find an increase in the stretch modulus for the NCP DNA. Our study for the first time reports the elastic properties of DNA when it is wrapped around the histone core in NCP. We further show that the WLC model is inadequate to describe DNA elasticity at short length scale. Our results provide a deeper understanding of DNA mechanics and the methods are applicable to most protein-DNA complexes.
Resumo:
Computational models based on the phase-field method typically operate on a mesoscopic length scale and resolve structural changes of the material and furthermore provide valuable information about microstructure and mechanical property relations. An accurate calculation of the stresses and mechanical energy at the transition region is therefore indispensable. We derive a quantitative phase-field elasticity model based on force balance and Hadamard jump conditions at the interface. Comparing the simulated stress profiles calculated with Voigt/Taylor (Annalen der Physik 274(12):573, 1889), Reuss/Sachs (Z Angew Math Mech 9:49, 1929) and the proposed model with the theoretically predicted stress fields in a plate with a round inclusion under hydrostatic tension, we show the quantitative characteristics of the model. In order to validate the elastic contribution to the driving force for phase transition, we demonstrate the absence of excess energy, calculated by Durga et al. (Model Simul Mater Sci Eng 21(5):055018, 2013), in a one-dimensional equilibrium condition of serial and parallel material chains. To validate the driving force for systems with curved transition regions, we relate simulations to the Gibbs-Thompson equilibrium condition
Resumo:
Self-assembly has been recognized as an efficient tool for generating a wide range of functional, chemically, or physically textured surfaces for applications in small scale devices. In this work, we investigate the stability of thin films of polymer solutions. For low concentrations of polymer in the solution, long length scale dewetting patterns are obtained with wavelength approximately few microns. Whereas, for concentrations above a critical value, bimodal dispersion curves are obtained with the dominant wavelength being up to two orders smaller than the usual dewetting length scale. We further show that the short wavelength corresponds to the phase separation in the film resulting in uniformly distributed high and low concentration regions. Interestingly, due to the solvent entropy, at very high concentration values of polymer, a re-entrant behaviour is observed with the dominant length scale now again corresponding to the dewetting wavelength. Thus, we show that the binary films of polymer solutions provide additional control parameters that can be utilized for generating functional textured surfaces for various applications. (C) 2016 AIP Publishing LLC.
Resumo:
Temporal relaxation of density fluctuations in supercooled liquids near the glass transition occurs in multiple steps. Using molecular dynamics simulations for three model glass-forming liquids, we show that the short-time beta relaxation is cooperative in nature. Using finite-size scaling analysis, we extract a growing length scale associated with beta relaxation from the observed dependence of the beta relaxation time on the system size. We find, in qualitative agreement with the prediction of the inhomogeneous mode coupling theory, that the temperature dependence of this length scale is the same as that of the length scale that describes the spatial heterogeneity of local dynamics in the long-time alpha-relaxation regime.
Resumo:
In the present paper, Eringen's nonlocal elasticity theory is employed to evaluate the length dependent in-plane stiffness of single-walled carbon nanotubes (SWCNTs). The SWCNT is modeled as an Euler-Bernoulli beam and is analyzed for various boundary conditions to evaluate the length dependent in-plane stiffness. It has been found that the nonlocal scaling parameter has a significant effect on the length dependent in-plane stiffness of SWCNTs. It has been observed that as the nonlocal scale parameter increases the stiffness ratio of SWCNT decreases. In nonlocality, the cantilever SWCNT has high in-plane stiffness as compared to the simply-supported and the clamped cases.
Resumo:
We use the HΙ scale height data along with the HΙ rotation curve as constraints to probe the shape and density profile of the dark matter halos of M31 (Andromeda) and the superthin, low surface brightness (LSB) galaxy UGC 07321. We model the galaxy as a two component system of gravitationally-coupled stars and gas subjected to the force field of a dark matter halo. For M31, we get a flattened halo which is required to match the outer galactic HΙ scale height data, with our best-fit axis ratio (0.4) lying at the most oblate end of the distributions obtained from cosmological simulations. For UGC 07321, our best-fit halo core radius is only slightly larger than the stellar disc scale length, indicating that the halo is important even at small radii in this LSB galaxy. The high value of the gas velocity dispersion required to match the scale height data can explain the low star-formation rate of this galaxy.
Resumo:
Small-scale mechanical testing of materials has gained prominence in the last decade or so due to the continuous miniaturization of components and devices in everyday application. This review describes the various micro-fabrication processes associated with the preparation of miniaturized specimens, geometries of test specimens and the small scale testing techniques used to determine the mechanical behaviour of materials at the length scales of a few hundred micro-meters and below. This is followed by illustrative examples in a selected class of materials. The choice of the case studies is based on the relevance of the materials used in today's world: evaluation of mechanical properties of thermal barrier coatings (TBCs), applied for enhanced high temperature protection of advanced gas turbine engine components, is essential since its failure by fracture leads to the collapse of the engine system. Si-based substrates, though brittle, are indispensible for MEMS/NEMS applications. Biological specimens, whose response to mechanical loads is important to ascertain their role in diseases and to mimic their structure for attaining high fracture toughness and impact resistance. An insight into the mechanisms behind the observed size effects in metallic systems can be exploited to achieve excellent strength at the nano-scale. A future outlook of where all this is heading is also presented.
Resumo:
Scaling behaviour has been observed at mesoscopic level irrespective of crystal structure, type of boundary and operative micro-mechanisms like slip and twinning. The presence of scaling at the meso-scale accompanied with that at the nano-scale clearly demonstrates the intrinsic spanning for different deformation processes and a true universal nature of scaling. The origin of a 1/2 power law in deformation of crystalline materials in terms of misorientation proportional to square root of strain is attributed to importance of interfaces in deformation processes. It is proposed that materials existing in three dimensional Euclidean spaces accommodate plastic deformation by one dimensional dislocations and their interaction with two dimensional interfaces at different length scales. This gives rise to a 1/2 power law scaling in materials. This intrinsic relationship can be incorporated in crystal plasticity models that aim to span different length and time scales to predict the deformation response of crystalline materials accurately.
Resumo:
Fracture toughness measurements at the small scale have gained prominence over the years due to the continuing miniaturization of structural systems. Measurements carried out on bulk materials cannot be extrapolated to smaller length scales either due to the complexity of the microstructure or due to the size and geometric effect. Many new geometries have been proposed for fracture property measurements at small-length scales depending on the material behaviour and the type of device used in service. In situ testing provides the necessary environment to observe fracture at these length scales so as to determine the actual failure mechanism in these systems. In this paper, several improvements are incorporated to a previously proposed geometry of bending a doubly clamped beam for fracture toughness measurements. Both monotonic and cyclic loading conditions have been imposed on the beam to study R-curve and fatigue effects. In addition to the advantages that in situ SEM-based testing offers in such tests, FEM has been used as a simulation tool to replace cumbersome and expensive experiments to optimize the geometry. A description of all the improvements made to this specific geometry of clamped beam bending to make a variety of fracture property measurements is given in this paper.
Resumo:
Electromigration, mostly known for its damaging effects in microelectronic devices, is basically a material transport phenomenon driven by the electric field and kinetically controlled by diffusion. In this work, we show how controlled electromigration can be used to create scientifically interesting and technologically useful micro-/nano-scale patterns, which are otherwise extremely difficult to fabricate using conventional cleanroom practices, and present a few examples of such patterns. In a solid thin-film structure, electromigration is used to generate pores at preset locations for enhancing the sensitivity of a MEMS sensor. In addition to electromigration in solids, the flow instability associated with the electromigration-induced long-range flow of liquid metals is shown to form numerous structures with high surface area to volume ratio. In very thin solid films on non-conductive substrates, solidification of flow-affected region results in the formation of several features, such as nano-/micro-sized discrete metallic beads, 3D structures consisting of nano-stepped stairs, etc.
Resumo:
This paper presents speaker normalization approaches for audio search task. Conventional state-of-the-art feature set, viz., Mel Frequency Cepstral Coefficients (MFCC) is known to contain speaker-specific and linguistic information implicitly. This might create problem for speaker-independent audio search task. In this paper, universal warping-based approach is used for vocal tract length normalization in audio search. In particular, features such as scale transform and warped linear prediction are used to compensate speaker variability in audio matching. The advantage of these features over conventional feature set is that they apply universal frequency warping for both the templates to be matched during audio search. The performance of Scale Transform Cepstral Coefficients (STCC) and Warped Linear Prediction Cepstral Coefficients (WLPCC) are about 3% higher than the state-of-the-art MFCC feature sets on TIMIT database.
Resumo:
The field of micro-/nano-mechanics of materials has been driven, on the one hand by the development of ever smaller structures in devices, and, on the other, by the need to map property variations in large systems that are microstructurally graded. Observations of `smaller is stronger' have also brought in questions of accompanying fracture property changes in the materials. In the wake of scattered articles on micro-scale fracture testing of various material classes, this review attempts to provide a holistic picture of the current state of the art. In the process, various reliable micro-scale geometries are shown, challenges with respect to instrumentation to probe ever smaller length scales are discussed and examples from recent literature are put together to exhibit the expanse of unusual fracture response of materials, from ductility in Si to brittleness in Pt. Outstanding issues related to fracture mechanics of small structures are critically examined for plausible solutions.
Resumo:
Poly[(2,5-dimethoxy-p-phenylene)vinylene] (DMPPV) of varying conjugation length was synthesized by selective elimination of organic soluble precursor polymers that contained two eliminatable groups, namely, methoxy and acetate groups. These precursor copolymers were in turn synthesized by competitive nucleophilic substitution of the sulfonium polyelectrolyte precursor (generated by the standard Wessling route) using methanol and sodium acetate in acetic acid. The composition of the precursor copolymer, in terms of the relative amounts of methoxy and acetate groups, was controlled by varying the composition of the reaction mixture during nucleophilic substitution. Thermal elimination of these precursor copolymers at 250 degrees C, yielded partially conjugated polymers, whose color varied from light yellow to deep red. FT-IR studies confirmed that, while essentially all the acetate groups were eliminated, the methoxy groups were intact and caused the interruption in conjugation. Preliminary photoluminescence studies of the partially eliminated DMPPV samples showed a gradual shift in the emission maximum from 498 to 598 nm with increasing conjugation lengths, suggesting that the color of LED devices fabricated from such polymers can, in principle, be fine-tuned.
Resumo:
Telomeres are the termini of linear eukaryotic chromosomes consisting of tandem repeats of DNA and proteins that bind to these repeat sequences. Telomeres ensure the complete replication of chromosome ends, impart protection to ends from nucleolytic degradation, end-to-end fusion, and guide the localization of chromosomes within the nucleus. In addition, a combination of genetic, biochemical, and molecular biological approaches have implicated key roles for telomeres in diverse cellular processes such as regulation of gene expression, cell division, cell senescence, and cancer. This review focuses on recent advances in our understanding of the organization of telomeres, telomere replication, proteins that bind telomeric DNA, and the establishment of telomere length equilibrium.