425 resultados para Laminated Composite Plates
Resumo:
A finite element analysis of thin-walled open-section laminated anisotropic beams is presented herein. A two-noded, 8 degrees of freedom per node thin-walled open-section laminated anisotropic beam finite element has been developed and used. The displacements of the element reference axes are expressed in terms of one-dimensional first order Hermite interpolation polynomials and line member assumptions are invoked in the formulation of the stiffness matrix. The problems of: 1. (a) an isotropic material Z section straight cantilever beam, and 2. (b) a single-layer (0°) composite Z section straight cantilever beam, for which continuum solutions (exact/approximate) are possible, have been solved in order to evaluate the performance of the finite element. Its applicability has been shown by solving the following problems: 3. (c) a two-layer (45°/−45°) composite Z section straight cantilever beam, 4. (d) a three-layer (0°/45°/0°) composite Z section straight cantilever beam.
Resumo:
This paper is a sequel to the work published by the first and third authors[l] on stiffened laminated shells of revolution made of unimodular materials (materials having identical properties in tension and compression). A finite element analysis of laminated bimodulus composite thin shells of revolution, reinforced by laminated bimodulus composite stiffeners is reported herein. A 48 dot doubly curved quadrilateral laminated anisotropic shell of revolution finite element and it's two compatible 16 dof stiffener finite elements namely: (i) a laminated anisotropic parallel circle stiffener element (PCSE) and (ii) a laminated anisotropic meridional stiffener element (MSE) have been used iteratively. The constitutive relationship of each layer is assumed to depend on whether the fiberdirection strain is tensile or compressive. The true state of strain or stress is realized when the locations of the neutral surfaces in the shell and the stiffeners remain unaltered (to a specified accuracy) between two successive iterations. The solutions for static loading of a stiffened plate, a stiffened cylindrical shell. and a stiffened spherical shell, all made of bimodulus composite materials, have been presented.
Resumo:
A general three-dimensional solution is presented for statics and dynamics of plates, homogeneous or laminated, of orthotropic materials. The solution is in series form. Using parts of the general solution a variety of problems, especially of rectangular configurations, can be solved. As Mindlin's approximate analysis for vibration of thick plates is often adequate for specific practical purposes, a general solution for Mindlin's analysis is also given.
Resumo:
Instability of laminated curved composite beams made of repeated sublaminate construction is studied using finite element method. In repeated sublaminate construction, a full laminate is obtained by repeating a basic sublaminate which has a smaller number of plies. This paper deals with the determination of optimum lay-up for buckling by ranking of such composite curved beams (which may be solid or sandwich). For this purpose, use is made of a two-noded, 16 degress of freedom curved composite beam finite element. The displacements u, v, w of the element reference axis are expressed in terms of one-dimensional first-order Hermite interpolation polynomials, and line member assumptions are invoked in formulation of the elastic stiffness matrix and geometric stiffness matrix. The nonlinear expressions for the strains, occurring in beams subjected to axial, flexural and torsional loads, are incorporated in a general instability analysis. The computer program developed has been used, after extensive checking for correctness, to obtain optimum orientation scheme of the plies in the sublaminate so as to achieve maximum buckling load for typical curved solid/sandwich composite beams.
Resumo:
In this paper we describe a method for the optimum design of fiber rein forced composite laminates for strength by ranking. The software developed based on this method is capable of designing laminates for strength; which are subjected to inplane and/or bending loads and optionally hygrothermal loads. Symmetric laminates only are considered which are assumed to be made of repeated sublaminate construction. Various layup schemes are evaluated based on the laminated plate theory and quadratic failure cri terion for the given mechanical and hygrothermal loads. The optimum layup sequence in the sublaminate and the number of such sublaminates required are obtained. Further, a ply-drop round-off scheme is adopted to arrive at an optimum laminate thickness. As an example, a family of 0/90/45/ -45 bi-directional lamination schemes are examined for dif ferent types of loads and the gains in optimising the ply orientations in a sublaminate are demonstrated.
Resumo:
This paper deals with the evaluation of the component-laminate load-carrying capacity, i.e., to calculate the loads that cause the failure of the individual layers and the component-laminate as a whole in four-bar mechanism. The component-laminate load-carrying capacity is evaluated using the Tsai-Wu-Hahn failure criterion for various layups. The reserve factor of each ply in the component-laminate is calculated by using the maximum resultant force and the maximum resultant moment occurring at different time steps at the joints of the mechanism. Here, all component bars of the mechanism are made of fiber reinforced laminates and have thin rectangular cross-sections. They could, in general, be pre-twisted and/or possess initial curvature, either by design or by defect. They are linked to each other by means of revolute joints. We restrict ourselves to linear materials with small strains within each elastic body (beam). Each component of the mechanism is modeled as a beam based on geometrically nonlinear 3-D elasticity theory. The component problems are thus split into 2-D analyses of reference beam cross-sections and nonlinear 1-D analyses along the three beam reference curves. For the thin rectangular cross-sections considered here, the 2-D cross-sectional nonlinearity is also overwhelming. This can be perceived from the fact that such sections constitute a limiting case between thin-walled open and closed sections, thus inviting the nonlinear phenomena observed in both. The strong elastic couplings of anisotropic composite laminates complicate the model further. However, a powerful mathematical tool called the Variational Asymptotic Method (VAM) not only enables such a dimensional reduction, but also provides asymptotically correct analytical solutions to the nonlinear cross-sectional analysis. Such closed-form solutions are used here in conjunction with numerical techniques for the rest of the problem to predict more quickly and accurately than would otherwise be possible. Local 3-D stress, strain and displacement fields for representative sections in the component-bars are recovered, based on the stress resultants from the 1-D global beam analysis. A numerical example is presented which illustrates the failure of each component-laminate and the mechanism as a whole.
Resumo:
This work intends to demonstrate the importance of geometrically nonlinear crosssectional analysis of certain composite beam-based four-bar mechanisms in predicting system dynamic characteristics. All component bars of the mechanism are made of fiber reinforced laminates and have thin rectangular cross-sections. They could, in general, be pre-twisted and/or possess initial curvature, either by design or by defect. They are linked to each other by means of revolute joints. We restrict ourselves to linear materials with small strains within each elastic body (beam). Each component of the mechanism is modeled as a beam based on geometrically nonlinear 3-D elasticity theory. The component problems are thus split into 2-D analyses of reference beam cross-sections and nonlinear 1-D analyses along the four beam reference curves. For thin rectangular cross-sections considered here, the 2-D cross-sectional nonlinearity is overwhelming. This can be perceived from the fact that such sections constitute a limiting case between thin-walled open and closed sections, thus inviting the nonlinear phenomena observed in both. The strong elastic couplings of anisotropic composite laminates complicate the model further. However, a powerful mathematical tool called the Variational Asymptotic Method (VAM) not only enables such a dimensional reduction, but also provides asymptotically correct analytical solutions to the nonlinear cross-sectional analysis. Such closed-form solutions are used here in conjunction with numerical techniques for the rest of the problem to predict multi-body dynamic responses, more quickly and accurately than would otherwise be possible. The analysis methodology can be viewed as a three-step procedure: First, the cross-sectional properties of each bar of the mechanism is determined analytically based on an asymptotic procedure, starting from Classical Laminated Shell Theory (CLST) and taking advantage of its thin strip geometry. Second, the dynamic response of the nonlinear, flexible fourbar mechanism is simulated by treating each bar as a 1-D beam, discretized using finite elements, and employing energy-preserving and -decaying time integration schemes for unconditional stability. Finally, local 3-D deformations and stresses in the entire system are recovered, based on the 1-D responses predicted in the previous step. With the model, tools and procedure in place, we shall attempt to identify and investigate a few problems where the cross-sectional nonlinearities are significant. This will be carried out by varying stacking sequences and material properties, and speculating on the dominating diagonal and coupling terms in the closed-form nonlinear beam stiffness matrix. Numerical examples will be presented and results from this analysis will be compared with those available in the literature, for linear cross-sectional analysis and isotropic materials as special cases.
Resumo:
In order to demonstrate the feasibility of Active Fiber Composites (AFC) as sensors for detecting damage, a pretwisted strip made of AFC with symmetric free-edge delamination is considered in this paper. The strain developed on the top/bottom of the strip is measured to detect and assess delamination. Variational Asymptotic Method (VAM) is used in the development of a non-classical non-linear cross sectional model of the strip. The original three dimensional (3D) problem is simplified by the decomposition into two simpler problems: a two-dimensional (2D) problem, which provides in a compact form the cross-sectional properties using VAM, and a non-linear one-dimensional (1D) problem along the length of the beam. This procedure gives the non-linear stiffnesses, which are very sensitive to damage, at any given cross-section of the strip. The developed model is used to study a special case of cantilevered laminated strip with antisymmetric layup, loaded only by an axial force at the tip. The charge generated in the AFC lamina is derived in closed form in terms of the 1D strain measures. It is observed that delamination length and location have a definite influence on the charge developed in the AFC lamina. Also, sensor voltage output distribution along the length of the beam is obtained using evenly distributed electrode strip. These data could in turn be used to detect the presence of damage.
Guided Wave based Damage Detection in a Composite T-joint using 3D Scanning Laser Doppler Vibrometer
Resumo:
Composite T-joints are commonly used in modern composite airframe, pressure vessels and piping structures, mainly to increase the bending strength of the joint and prevents buckling of plates and shells, and in multi-cell thin-walled structures. Here we report a detailed study on the propagation of guided ultrasonic wave modes in a composite T-joint and their interactions with delamination in the co-cured co-bonded flange. A well designed guiding path is employed wherein the waves undergo a two step mode conversion process, one is due to the web and joint filler on the back face of the flange and the other is due to the delamination edges close to underneath the accessible surface of the flange. A 3D Laser Doppler Vibrometer is used to obtain the three components of surface displacements/velocities of the accessible face of the flange of the T-joint. The waves are launched by a piezo ceramic wafer bonded on to the back surface of the flange. What is novel in the proposed method is that the location of any change in material/geometric properties can be traced by computing a frequency domain power flow along a scan line. The scan line can be chosen over a grid either during scan or during post-processing of the scan data off-line. The proposed technique eliminates the necessity of baseline data and disassembly of structure for structural interrogation.
Resumo:
This work intends to demonstrate the importance of a geometrically nonlinear cross-sectional analysis of certain composite beam-based four-bar mechanisms in predicting system dynamic characteristics. All component bars of the mechanism are made of fiber reinforced laminates and have thin rectangular cross-sections. They could, in general, be pre-twisted and/or possess initial curvature, either by design or by defect. They are linked to each other by means of revolute joints. We restrict ourselves to linear materials with small strains within each elastic body (beam). Each component of the mechanism is modeled as a beam based on geometrically non-linear 3-D elasticity theory. The component problems are thus split into 2-D analyses of reference beam cross-sections and non-linear 1-D analyses along the three beam reference curves. For the thin rectangular cross-sections considered here, the 2-D cross-sectional non-linearity is also overwhelming. This can be perceived from the fact that such sections constitute a limiting case between thin-walled open and closed sections, thus inviting the non-linear phenomena observed in both. The strong elastic couplings of anisotropic composite laminates complicate the model further. However, a powerful mathematical tool called the Variational Asymptotic Method (VAM) not only enables such a dimensional reduction, but also provides asymptotically correct analytical solutions to the non-linear cross-sectional analysis. Such closed-form solutions are used here in conjunction with numerical techniques for the rest of the problem to predict multi-body dynamic responses more quickly and accurately than would otherwise be possible. The analysis methodology can be viewed as a three-step procedure: First, the cross-sectional properties of each bar of the mechanism is determined analytically based on an asymptotic procedure, starting from Classical Laminated Shell Theory (CLST) and taking advantage of its thin strip geometry. Second, the dynamic response of the non-linear, flexible four-bar mechanism is simulated by treating each bar as a 1-D beam, discretized using finite elements, and employing energy-preserving and -decaying time integration schemes for unconditional stability. Finally, local 3-D deformations and stresses in the entire system are recovered, based on the 1-D responses predicted in the previous step. With the model, tools and procedure in place, we identify and investigate a few four-bar mechanism problems where the cross-sectional non-linearities are significant in predicting better and critical system dynamic characteristics. This is carried out by varying stacking sequences (i.e. the arrangement of ply orientations within a laminate) and material properties, and speculating on the dominating diagonal and coupling terms in the closed-form non-linear beam stiffness matrix. A numerical example is presented which illustrates the importance of 2-D cross-sectional non-linearities and the behavior of the system is also observed by using commercial software (I-DEAS + NASTRAN + ADAMS). (C) 2012 Elsevier Ltd. All rights reserved.
Guided-wave-based damage detection in a composite T-joint using 3D scanning laser Doppler vibrometer
Resumo:
Composite T-joints are commonly used in modern composite airframe, pressure vessels and piping structures, mainly to increase the bending strength of the joint and prevents buckling of plates and shells, and in multi-cell thin-walled structures. Here we report a detailed study on the propagation of guided ultrasonic wave modes in a composite T-joint and their interactions with delamination in the co-cured co-bonded flange. A well designed guiding path is employed wherein the waves undergo a two step mode conversion process, one is due to the web and joint filler on the back face of the flange and the other is due to the delamination edges close to underneath the accessible surface of the flange. A 3D Laser Doppler Vibrometer is used to obtain the three components of surface displacements/velocities of the accessible face of the flange of the T-joint. The waves are launched by a piezo ceramic wafer bonded on to the back surface of the flange. What is novel in the proposed method is that the location of any change in material/geometric properties can be traced by computing a frequency domain power flow along a scan line. The scan line can be chosen over a grid either during scan or during post-processing of the scan data off-line. The proposed technique eliminates the necessity of baseline data and disassembly of structure for structural interrogation.
Resumo:
The Variational Asymptotic Method (VAM) is used for modeling a coupled non-linear electromechanical problem finding applications in aircrafts and Micro Aerial Vehicle (MAV) development. VAM coupled with geometrically exact kinematics forms a powerful tool for analyzing a complex nonlinear phenomena as shown previously by many in the literature 3 - 7] for various challenging problems like modeling of an initially twisted helicopter rotor blades, matrix crack propagation in a composite, modeling of hyper elastic plates and various multi-physics problems. The problem consists of design and analysis of a piezocomposite laminate applied with electrical voltage(s) which can induce direct and planar distributed shear stresses and strains in the structure. The deformations are large and conventional beam theories are inappropriate for the analysis. The behavior of an elastic body is completely understood by its energy. This energy must be integrated over the cross-sectional area to obtain the 1-D behavior as is typical in a beam analysis. VAM can be used efficiently to approximate 3-D strain energy as closely as possible. To perform this simplification, VAM makes use of thickness to width, width to length, width multiplied by initial twist and strain as small parameters embedded in the problem definition and provides a way to approach the exact solution asymptotically. In this work, above mentioned electromechanical problem is modeled using VAM which breaks down the 3-D elasticity problem into two parts, namely a 2-D non-linear cross-sectional analysis and a 1-D non-linear analysis, along the reference curve. The recovery relations obtained as a by-product in the cross-sectional analysis earlier are used to obtain 3-D stresses, displacements and velocity contours. The piezo-composite laminate which is chosen for an initial phase of computational modeling is made up of commercially available Macro Fiber Composites (MFCs) stacked together in an arbitrary lay-up and applied with electrical voltages for actuation. The expressions of sectional forces and moments as obtained from cross-sectional analysis in closed-form show the electro-mechanical coupling and relative contribution of electric field in individual layers of the piezo-composite laminate. The spatial and temporal constitutive law as obtained from the cross-sectional analysis are substituted into 1-D fully intrinsic, geometrically exact equilibrium equations of motion and 1-D intrinsic kinematical equations to solve for all 1-D generalized variables as function of time and an along the reference curve co-ordinate, x(1).
Resumo:
This paper deals with modeling of the first damage mode, matrix micro-cracking, in helicopter rotor/wind turbine blades and how this effects the overall cross-sectional stiffness. The helicopter/wind turbine rotor system operates in a highly dynamic and unsteady environment leading to severe vibratory loads present in the system. Repeated exposure to this loading condition can induce damage in the composite rotor blades. These rotor/turbine blades are generally made of fiber-reinforced laminated composites and exhibit various competing modes of damage such as matrix micro-cracking, delamination, and fiber breakage. There is a need to study the behavior of the composite rotor system under various key damage modes in composite materials for developing Structural Health Monitoring (SHM) system. Each blade is modeled as a beam based on geometrically non-linear 3-D elasticity theory. Each blade thus splits into 2-D analyzes of cross-sections and non-linear 1-D analyzes along the beam reference curves. Two different tools are used here for complete 3-D analysis: VABS for 2-D cross-sectional analysis and GEBT for 1-D beam analysis. The physically-based failure models for matrix in compression and tension loading are used in the present work. Matrix cracking is detected using two failure criterion: Matrix Failure in Compression and Matrix Failure in Tension which are based on the recovered field. A strain variable is set which drives the damage variable for matrix cracking and this damage variable is used to estimate the reduced cross-sectional stiffness. The matrix micro-cracking is performed in two different approaches: (i) Element-wise, and (ii) Node-wise. The procedure presented in this paper is implemented in VABS as matrix micro-cracking modeling module. Three examples are presented to investigate the matrix failure model which illustrate the effect of matrix cracking on cross-sectional stiffness by varying the applied cyclic
Resumo:
This paper presents an approximate three-dimensional elasticity solution for an infinitely long, cross-ply laminated circular cylindrical shell panel with simply supported boundary conditions, subjected to an arbitrary discontinuous transverse loading. The solution is based on the principal assumption that the ratio of the thickness of the lamina to its middle surface radius is negligible compared to unity. The validity of this assumption and the range of application of this approximate solution have been established through a comparison with an exact solution. Results of classical and first-order shear deformation shell theories have been compared with the results of the present solution to bring out the accuracy of these theories. It is also shown that for very shallow shell panels the definition of a thin shell should be based on the ratio of thickness to chord width rather than the ratio of thickness to mean radius.
Resumo:
In high-speed aerospace vehicles, supersonic flutter is a well-known phenomenon of dynamic instability to which external skin panels are prone. In theory, the instability stage is expressed by the 'flutter critical parameter' Q(crit), which is a function of the stiffness-, and dynamic pressure parameters. For a composite skin panel, Q(crit) can be maximised by lay-up optimisation. Repeated-sublaminate lay-up schemes possess good potential for economical lay-up optimisation because the corresponding effort is limited to a family of sublaminates of few layers only. When Q(crit) is obtained for all sublaminates of a family, and the sublaminates ranked accordingly, the resulting ranking reveals not only the optimum lay-up, but also the near-optimum lay-ups, which are useful design alternatives, and the inferior lay-ups which should be avoided. In this paper, we examine sublaminate-ranking characteristics for a composite panel prone to supersonic flutter. In particular, we consider a simple supported midplane-symmetrical rectangular panel of typical aspect ratio alpha and flow angle psi, and for four-layered sublaminates, obtain the Q(crit)-based rankings for a wide range of the number of repeats, r. From the rankings, we find that an optimum lay-up can exist for which the outermost layer is oriented wide of, rather than along, the flow. Furthermore, for many lay-ups other than the optimum and the inferior, we see that as r increases, Q(crit) undergoes significant change in the course of converging. To reconcile these findings, eigenvalue-coalescence characteristics are discussed in detail for specific cases.