402 resultados para Johnston, Adelia Antoinette Field, 1837-1910
Resumo:
An error-free computational approach is employed for finding the integer solution to a system of linear equations, using finite-field arithmetic. This approach is also extended to find the optimum solution for linear inequalities such as those arising in interval linear programming probloms.
Resumo:
The effect of suction on the steady laminar incompressible boundarylayer flow for a stationary infinite disc with or without magnetic field, when the fluid at a large distance from the surface of the disc undergoes a solid body rotation, has been studied. The governing coupled nonlinear equations have been solved numerically using the shooting method with least square convergence criterion. It has been found that suction tends to reduce the velocity overshoot and damp the oscillation.
Resumo:
We offer a procedure for evaluating the forces exerted by solitons of weak-coupling field theories on one another. We illustrate the procedure for the kink and the antikink of the two-dimensional φ4 theory. To do this, we construct analytically a static solution of the theory which can be interpreted as a kink and an antikink held a distance R apart. This leads to a definition of the potential energy U(R) for the pair, which is seen to have all the expected features. A corresponding evaluation is also done for U(R) between a soliton and an antisoliton of the sine-Gordon theory. When this U(R) is inserted into a nonrelativistic two-body problem for the pair, it yields a set of bound states and phase shifts. These are found to agree with exact results known for the sine-Gordon field theory in those regions where U(R) is expected to be significant, i.e., when R is large compared to the soliton size. We take this agreement as support that our procedure for defining U(R) yields the correct description of the dynamics of well-separated soliton pairs. An important feature of U(R) is that it seems to give strong intersoliton forces when the coupling constant is small, as distinct from the forces between the ordinary quanta of the theory. We suggest that this is a general feature of a class of theories, and emphasize the possible relevance of this feature to real strongly interacting hadrons.
Resumo:
Downscaling to station-scale hydrologic variables from large-scale atmospheric variables simulated by general circulation models (GCMs) is usually necessary to assess the hydrologic impact of climate change. This work presents CRF-downscaling, a new probabilistic downscaling method that represents the daily precipitation sequence as a conditional random field (CRF). The conditional distribution of the precipitation sequence at a site, given the daily atmospheric (large-scale) variable sequence, is modeled as a linear chain CRF. CRFs do not make assumptions on independence of observations, which gives them flexibility in using high-dimensional feature vectors. Maximum likelihood parameter estimation for the model is performed using limited memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) optimization. Maximum a posteriori estimation is used to determine the most likely precipitation sequence for a given set of atmospheric input variables using the Viterbi algorithm. Direct classification of dry/wet days as well as precipitation amount is achieved within a single modeling framework. The model is used to project the future cumulative distribution function of precipitation. Uncertainty in precipitation prediction is addressed through a modified Viterbi algorithm that predicts the n most likely sequences. The model is applied for downscaling monsoon (June-September) daily precipitation at eight sites in the Mahanadi basin in Orissa, India, using the MIROC3.2 medium-resolution GCM. The predicted distributions at all sites show an increase in the number of wet days, and also an increase in wet day precipitation amounts. A comparison of current and future predicted probability density functions for daily precipitation shows a change in shape of the density function with decreasing probability of lower precipitation and increasing probability of higher precipitation.
Resumo:
We compute concurrence and negativity as measures of two-spin entanglement generated by a power-law quench (characterized by a rate tau(-1) and an exponent alpha) which takes an anisotropic XY chain in a transverse field through a quantum critical point (QCP). We show that only spins separated by an even number of lattice spacings get entangled in such a process. Moreover, there is a critical rate of quench, tau(-1)(c), above which no two-spin entanglement is generated; the entire entanglement is multipartite. The ratio of the entanglements between consecutive even neighbors can be tuned by changing the quench rate. We also show that for large tau, the concurrence (negativity) scales as root alpha/tau(alpha/tau), and we relate this scaling behavior to defect production by the quench through a QCP.
Resumo:
The electrical and optical response of a field-effect device comprising a network of semiconductor-enriched single-wall carbon nanotubes, gated with sodium chloride solution is investigated. Field-effect is demonstrated in a device that uses facile fabrication techniques along with a small-ion as the gate electrolyte-and this is accomplished as a result of the semiconductor enhancement of the tubes. The optical transparency and electrical resistance of the device are modulated with gate voltage. A time-response study of the modulation of optical transparency and electrical resistance upon application of gate voltage suggests the percolative charge transport in the network. Also the ac response in the network is investigated as a function of frequency and temperature down to 5 K. An empirical relation between onset frequency and temperature is determined.
Resumo:
Qualitative and quantitative assessment of the fungal flora of rice field soils yielded 102 species of fungi belonging to 44 genera, when dilution plate, soil plate, root-washing and baiting techniques were employed. The order of efficacy of the methods used was: root-washing > soil plate > dilution plate > baiting. Baiting method, used specifically to isolate aquatic and keratinophilic fungi from soils was studied in detail with reference to the former. Qualitatively, corn leaf bait was the most efficient one while pine pollens and hemp seeds were least efficient. A semi-quantitative method was employed to study the statistically significant differences among the different factors used. Among the keratinophilic baits,viz., human hair, fowl’s feather and wool, wool bait was least efficient. The results of this investigation are discussed.
Resumo:
An experimental system was developed for assessing the role ofhetgenes in heterokaryon formation inNeurosporain nature. Burned sugar cane segments planted in soil were infected using a mixture of mutant ascospores of two genotypes.Neurosporaramified in the cane and erupted as distinct pustules of conidia. When ascospores carried identicalhetalleles, the (macro) conidial pustules which formed were heterokaryotic. On the other hand, when ascospores carried dissimilarhetalleles, the pustules were homokaryotic. These results showed that stable heterokaryons between compatible strains can form in nature. When two strains are growing together on a natural substrate, heterozygosity athetloci serves to maintain their individuality.
Resumo:
A modal analysis and near-field study for a dielectric-coated conducting sphere excited by a delta function electric field source has been made. The structure can support an infinite number of modes theoretically. For equatorial excitation only odd order modes are excited, whereas for non-equatorial excitation both even and odd order modes are excited. The variation of the amplitude coefficients both internal and external exhibit a different nature of variation with respect to the various structure parameters for different modes. The field distributions both in the r and theta directions for non-equatorial excitation show good agreement between theory and experiment for the strongest mode.
Resumo:
The flow, heat and mass transfer problem for boundary layer swirling flow of a laminar steady compressible electrically conducting gas with variable properties through a conical nozzle and a diffuser with an applied magnetic field has been studied. The partial differential equations governing the flow have been solved numerically using an implicit finite-difference scheme after they have been transformed into dimensionless form using the modified Lees transformation. The results indicate that the skin friction and heat transfer strongly depend on the magnetic field, mass transfer and variation of the density-viscosity product across the boundary layer. However, the effect of the variation of the density-viscosity product is more pronounced in the case of a nozzle than in the case of a diffuser. It has been found that large swirl is required to produce strong effect on the skin friction and heat transfer. Separationless flow along the entire length of the diffuser can be obtained by applying appropriate amount of suction. The results are found to be in good agreement with those of the local nonsimilarity method, but they differ quite significantly from those of the local similarity method.
Resumo:
The steady MHD mixed convection flow of a viscoelastic fluid in the vicinity of two-dimensional stagnation point with magnetic field has been investigated under the assumption that the fluid obeys the upper-convected Maxwell (UCM) model. Boundary layer theory is used to simplify the equations of motion. induced magnetic field and energy which results in three coupled non-linear ordinary differential equations which are well-posed. These equations have been solved by using finite difference method. The results indicate the reduction in the surface velocity gradient, surface heat transfer and displacement thickness with the increase in the elasticity number. These trends are opposite to those reported in the literature for a second-grade fluid. The surface velocity gradient and heat transfer are enhanced by the magnetic and buoyancy parameters. The surface heat transfer increases with the Prandtl number, but the surface velocity gradient decreases.
Resumo:
The influence of electric field and temperature on power consumption of piezoelectric actuated integrated structure is studied by using a single degree of freedom mass-spring-damper system model coupled with a piezoactuator. The material lead zirconate titanate, is considered as it is capable of producing relatively high strains (e.g., 3000 mu epsilon). Actuators are often subject to high electric fields to increase the induced strain produced, resulting in field dependant piezoelectric coefficient d(31), dielectric coefficient epsilon(33) and dissipation factor delta. Piezostructures are also likely to be used across a wide range of temperatures in aerospace and undersea operations. Again, the piezoelectric properties can vary with temperature. Recent experimental studies by physics researchers have looked at the effect of high electric field and temperature on piezoelectric properties. These properties are used together with an impedance based power consumption model. Results show that including the nonlinear variation of dielectric permittivity and dissipation factor with electric field is important. Temperature dependence of the dielectric constant also should be considered.
Resumo:
We have evaluated techniques of estimating animal density through direct counts using line transects during 1988-92 in the tropical deciduous forests of Mudumalai Sanctuary in southern India for four species of large herbivorous mammals, namely, chital (Axis axis), sambar (Cervus unicolor), Asian elephant (Elephas maximus) and gaur (Bos gauras). Density estimates derived from the Fourier Series and the Half-Normal models consistently had the lowest coefficient of variation. These two models also generated similar mean density estimates. For the Fourier Series estimator, appropriate cut-off widths for analysing line transect data for the four species are suggested. Grouping data into various distance classes did not produce any appreciable differences in estimates of mean density or their variances, although model fit is generally better when data are placed in fewer groups. The sampling effort needed to achieve a desired precision (coefficient of variation) in the density estimate is derived. A sampling effort of 800 km of transects returned a 10% coefficient of variation on estimate for chital; for the other species a higher effort was needed to achieve this level of precision. There was no statistically significant relationship between detectability of a group and the size of the group for any species. Density estimates along roads were generally significantly different from those in the interior af the forest, indicating that road-side counts may not be appropriate for most species.
Resumo:
It has been found experimentally that the results related to the collective field emission performance of carbon nanotube (CNT) arrays show variability. The emission performance depends on the electronic structure of CNTs (especially their tips). Due to limitations in the synthesis process, production of highly pure and defect free CNTs is very difficult. The presence of defects and impurities affects the electronic structure of CNTs. Therefore, it is essential to analyze the effect of defects on the electronic structure, and hence, the field emission current. In this paper, we develop a modeling approach for evaluating the effect of defects and impurities on the overall field emission performance of a CNT array. We employ a concept of effective stiffness degradation for segments of CNTs, which is due to structural defects. Then, we incorporate the vacancy defects and charge impurity effects in our Green's function based approach. Simulation results indicate decrease in average current due to the presence of such defects and impurities.
Resumo:
We consider the growth of an isolated precipitate when the matrix diffusivity depends on the composition. We have simulated precipitate growth using the Cahn-Hilliard model, and find good agreement between our results and those from a sharp interface theory for systems with and without a dilatational misfit. With misfit, we report (and rationalize) an interesting difference between systems with a constant diffusivity and those with a variable diffusivity in the matrix.