101 resultados para Inositol 1,4,5-trisphosphate (IP3)
Resumo:
An efficient strategy for the contruction of spiro[4.5] decanes is described and involves a bridgehead substitution of a methoxyl group by a methyl group followed by an oxidative cleavage of the tricyclo[5.2.2.0(1,5)] undecane 25 to produce the spiro[4.5] decanes 31 & 32 which are intermediates in the synthesis of acorone. A novel one-pot conversion of alpha-methoxy carboxylic acid to alpha-methyl carboxylic acid is described.
Resumo:
DNA intercalating molecules are promising anticancer agents. Polycyclic aromatic molecules such as ellipticine intercalate into double-stranded DNA and affect major physiological functions. In the present study, we have characterized two molecules with the same chemical backbone but different side chains, namely 8-methoxy pyrimido[4',5':4,5]thieno (2,3-b)quinoline-4(3H)-one (MPTQ) and 4-morpholino pyrimido[4',5':4,5]thieno(2,3-b)quinoline (morpho-PTQ) at the 8th and 4th position, respectively. Although both MPTQ and morpho-PTQ show similar biophysical properties with high DNA affinity, here we show that they differ in their biological activities. We find that MPTQ is many fold more potent than morpho-PTQ and is cytotoxic against different leukemic cell lines. IC(50) value of methoxy PTQ was estimated between 2-15 A mu M among the leukemic cells studied, while it was more than 200 A mu M when morpho-PTQ was used. Cell cycle analysis shows an increase in sub-G1 phase, without any particular cell cycle arrest. Annexin V staining in conjunction with comet assay and DNA fragmentation suggest that MPTQ induces cytotoxicity by activating apoptosis. Thus the observed low IC(50) value of MPTQ makes it a promising cancer chemotherapeutic agent.
Resumo:
The crystal structure of 3,4,5-trichlorophenol contains hydrogen bonded domains that occur respectively in the structures of 4-chlorophenol and 3,5-dichlorophenol. Such modularity is also seen in 2,3,4-trichlorophenol. These structures, and those of the six isomeric dichlorophenols, illustrate the importance of halogen bonding as a structure determining interaction.
Resumo:
A series of novel 2-(4-(2,4-dimethoxybenzoyl)phenoxy)-1-(4-(3-(piperidin-4-yl)propyl) piperidin-1-yl)ethanone derivatives 9(ae) and 10(ag) were synthesized and characterized by 1H NMR, IR, mass spectral, and elemental analysis. These novel compounds were evaluated for their antileukemic activity against two human leukemic cell lines (K562 and CEM) by using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide assay. Some of the tested compounds showed good antiproliferative activity with IC50 values ranging from 1.6 to 8.0 mu m. Compound 9c, 9e, and 10f with an electron-withdrawing halogen substituent at the para position on the phenyl ring showed excellent in vitro potency against tested human leukemia cells (K562 and CEM).
Resumo:
In search for a new antioxidant and antimicrobial agent with improved potency, we synthesized a series of benzofuran based 1,3,5-substituted pyrazole analogues (5a-l) in five step reaction. Initially, o-alkyl derivative of salicyaldehyde readily furnish corresponding 2-acetyl benzofuran 2 in good yield, on treatment with 1,8-diaza bicyclo5.4.0]undec-7-ene (DBU) in the presence of molecular sieves. Further, aldol condensation with vanillin, Claisen-Schmidt condensation reaction with hydrazine hydrate followed by coupling of substituted anilines afforded target compounds. The structures of newly synthesized compounds were confirmed by IR, H-1 NMR, C-13 NMR, mass, elemental analysis and further screened for their antioxidant and antimicrobial activities. Among the tested compounds 5d and 5f exhibited good antioxidant property with 50% inhibitory concentration higher than that of reference while compounds 5h and 5l exhibited good antimicrobial activity at concentration 1.0 and 0.5 mg/mL compared with standard, streptomycin and fluconazole respectively. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
4,5-Dihydroisoxazoles continue to attract considerable interest due to their wide spread biological activities. Here, we identify an efficient protocol for the preparation of 4,5-dihydroisoxazoles (2-isaxazolines) (4a-g) from quinolinyl chalcones. The nucleolytic activities of synthesized compounds were investigated by agarose gel electrophoresis. All these compounds were showed the remarkable DNA cleavage activity (concentration dependent) with pUC19 DNA at 365 nm UV light. The DNA cleavage activity was significantly enhanced by the presence of iminyl and carboxy radicals of DIQ. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
A series of 5-bromo-2-(3,5-diaryl-4,5-dihydro-1H-Pyrazol-1-yl)pyrimidine were prepared under conventional heating as well as microwave reaction condition. The newly synthesized compounds were characterized on the basis of elemental, spectral and single crystal X-ray studies. These new compounds were screened for their antioxidant, anti-inflammatory and analgesic activities. Some of these compounds exhibited potent biological activities compared to the standard drug. (C) 2012 Elsevier Masson SAS. All rights reserved.
Resumo:
Polycyclic aromatic molecules such as ellipticine intercalate into double-stranded DNA and interfere with physiological functions. In the present study, we evaluate the chemotherapeutic potential of MPTQ on animal models and its mode of action. In order to test the antitumor activity, monohydrochloride of MPTQ was orally administered in mice bearing tumor. Results showed a significant inhibition of tumor growth compared to that of untreated controls. More importantly, mean lifespan of tumor bearing animals treated with MPTQ was significantly higher as compared to that of untreated tumor bearing mice suggesting that the treatment affected viability of cancerous cells, but not of normal cells. Consistent with this, we find that administration of MPTQ to normal mice did not cause any major side effects as observed upon hematological and serum profiling. We also found that MPTQ induces cytotoxicity in cancer cell lines, by activating apoptosis both by intrinsic and extrinsic pathways. Thus, MPTQ could be used as a potential cancer therapeutic agent.
Resumo:
Neuroblastoma is the most common cancer in infants and fourth most common cancer in children. Despite recent advances in cancer treatments, the prognosis of stage-IV neuroblastoma patients continues to be dismal which warrant new pharmacotherapy. A novel tetracyclic condensed quinoline compound, 8-methoxypyrimido 4 `,5 `: 4,5] thieno(2,3-b) quinoline-4(3H)-one (MPTQ) is a structural analogue of an anticancer drug ellipticine and has been reported to posses anticancer property. Study on MPTQ on neuroblastoma cells is very limited and mechanisms related to its cytotoxicity on neuroblastoma cells are completely unknown. Here, we evaluated the anticancer property of MPTQ on mouse neuro 2a and human SH-SY5Y neuroblastoma cells and investigated the mechanisms underlying MPTQ-mediated neuro 2a cell death. MPTQ-mediated neuro 2a and SH-SY5Y cell deaths were found to be dose and time dependent. Moreover, MPTQ induced cell death reached approximately 99.8% and 90% in neuro 2a and SH-SY5Y cells respectively. Nuclear oligonucleosomal DNA fragmentation and Terminal dUTP Nick End Labelling assays indicated MPTQ-mediated neuro 2a cell death involved apoptosis. MPTQ-mediated apoptosis is associated with increased phosphorylation of p53 at Ser15 and Ser20 which correlates with the hyperphosphorylation of Ataxia-Telangiectasia mutated protein (ATM). Immunocytochemical analysis demonstrated the increased level of Bax protein in MPTQ treated neuro 2a cells. MPTQ-mediated apoptosis is also associated with increased activation of caspase-9, -3 and -7 but not caspase-2 and -8. Furthermore, increased level of caspase-3 and cleaved Poly ( ADP Ribose) polymerase were observed in the nucleus of MPTQ treated neuro 2a cells, suggesting the involvement of caspase-dependent intrinsic but not extrinsic apoptotic pathway. Increased nuclear translocation of apoptosis inducing factor suggests additional involvement of caspase-independent apoptosis pathway in MPTQ treated neuro 2a cells. Collectively, MPTQ-induced neuro 2a cell death is mediated by ATM and p53 activation, and Bax-mediated activation of caspase-dependent and caspase-independent mitochondrial apoptosis pathways.
Resumo:
Side chain homologated derivatives of 2-chloro-3-(n-alkylamino)-1,4-naphthoquinone {n-alkyl: pentyl; L-5, hexyl; L-6, heptyl; L-7 and octyl; L-8} have been synthesized and characterized by elemental analysis, FT-IR, H-1 NMR, UV-visible spectroscopy and LC-MS. Compounds, L-4, n-alkyl: butyl; L-4}, L-6 and L-8 have been characterized by single crystal X-ray diffraction studies. The single crystal X-ray structures reveal that L-4 and L-8 crystallizes in P2(1) space group, while L-6 in P2(1)/c space group. Molecules of L-4 and L-8 from polymeric chains through C-H center dot center dot center dot O and N-H center dot center dot center dot O close contacts. L-6 is a dimer formed by N-H center dot center dot center dot O interaction. Slipped pi-pi stacking interactions are observed between quinonoid and benzenoid rings of L-4 and L-8. Orientations of alkyl group in L-4 and L-8 is on same side of the chain and polymeric chains run opposite to one another to form zip like structure to the alkyl groups. Antiproliferative activities of L-1 to L-8{n-alkyl: methyl; L-1, ethyl; L-2, propyl; L-3 and butyl; L-4} were studied in cancer cells of colon (COLO205), brain (U87MG) and pancreas (MIAPaCa2) where L-1, L-2 and L-3 were active in MIAPaCa2 (L-1 = 1-2 > L-3) and COLO205 (L-2 = L-3 > L-1) and inactive in U87MG. From antiproliferative studies with compounds L-1 to L-8 it can be concluded that homologation of 2-chloro-3-(n-alkylamino)-1,4-napthoquinone with saturated methyl groups yielded tissue specific compounds such as L-2 (for MIAPaCa2) and L-3 (for COLO205) with optimal activity. (c) 2013 Elsevier B.V. All rights reserved.
Resumo:
In this article we present the syntheses, characterizations, magnetic and luminescence properties of five 3d-metal complexes, Co(tib)(1,2-phda)](n)center dot(H2O)(n) (1), Co-3(tib)(2)(1,3-phda)(3)(H2O)](n)center dot(H2O)(2n) (2), Co-5(tib)(3)(1,4-phda)(5)(H2O)(3)](n)center dot(H2O)(7n) (3), Zn-3(tib)(2)(1,3-phda)(3)](n)center dot(H2O)(4n) (4), and Mn(tib)(2)(H2O)(2)](n)center dot(1,4-phdaH)(2n)center dot(H2O)(4n) (5), obtained from the use of isomeric phenylenediacetates (phda) and the neutral 1,3,5-tris(1-imidazolyl)benzene (tib) ligand. Single crystal X-ray structures showed that 1 constitutes 3,5-connected 2-nodal nets with a double-layered two-dimensional (2D) structure, while 2 forms an interpenetrated 2D network (3,4-connected 3-nodal net). Complex 3 has a complicated three-dimensional structure with 10-nodal 3,4,5-connected nets. Complex 4, although it resembles 2 in stoichiometry and basic building structures, forms a very different overall 2D assembly. In complex 5 the dicarboxylic acid, upon losing only one of the acidic protons, does not take part in coordination; instead it forms a complicated hydrogen bonding network with water molecules. Magnetic susceptibility measurements over a wide range of temperatures revealed that the metal ions exchange very poorly through the tib ligand, but for the Co(II) complexes the effects of nonquenched orbital contributions are prominent. The 3d(10) metal complex 4 showed strong luminescence with lambda(max) = 415 nm (lambda(ex) = 360 nm).
Resumo:
Two new low band gap D-A structured conjugated polymers, PBDTTBI and PBDTBBT, based on 2-(4-(trifluoromethyl)phenyl)-1H-benzod]imidazole and benzo1,2-c; 4,5-c']bis1,2,5]thiadiazole acceptor units with benzo1,2-b; 3,4-b']dithiophene as a donor unit have been designed and synthesized via a Stille coupling reaction. The incorporation of the benzo1,2-c; 4,5-c']bis1,2,5]thiadiazole unit into PBDTBBT has significantly altered the optical and electrochemical properties of the polymer. The optical band gap estimated from the onset absorption edge is similar to 1.88 eV and similar to 1.1 eV, respectively for PBDTTBI and PBDTBBT. It is observed that PBDTBBT exhibited a deeper HOMO energy level (similar to 4.06 eV) with strong intramolecular charge transfer interactions. Bulk heterojunction solar cells fabricated with a configuration of ITO/PEDOT: PSS/PBDTBBT: PC71BM/Al exhibited a best power conversion efficiency of 0.67%, with a short circuit current density of 4.9 mA cm(-2), an open-circuit voltage of 0.54 V and a fill factor of 25%.
Resumo:
Cryosorption pump is the only possible device to pump helium, hydrogen and its isotopes in fusion environment, such as high magnetic field and high plasma temperatures. Activated carbons are known to be the most suitable adsorbent in the development of cryosorption pumps. For this purpose, the data of adsorption characteristics of activated carbons in the temperature range 4.5 K to 77 K are needed, but are not available in the literature. For obtaining the above data, a commercial micro pore analyzer operating at 77 K has been integrated with a two stage GM cryocooler, which enables the cooling of the sample temperature down to 4.5 K. A heat switch mounted between the second stage cold head and the sample chamber helps to raise the sample chamber temperature to 77 K without affecting the performance of the cryocooler. The detailed description of this system is presented elsewhere. This paper presents the results of experimental studies of adsorption isotherms measured on different types of activated carbons in the form of granules, globules, flake knitted and non-woven types in the temperature range 4.5 K to 10 K using Helium gas as the adsorbate. The above results are analyzed to obtain the pore size distributions and surface areas of the activated carbons. The effect of adhesive used for bonding the activated carbons to the panels is also studied. These results will be useful to arrive at the right choice of activated carbon to be used for the development of cryosorption pumps.
Resumo:
The gas-phase infrared spectra of 1,2-ED and 1,4-BD have been, recorded at three different temperatures using a multipass gas cell of 6 m optical path length. DFT calculation has also been carried out using 6-311++G** and aug-cc-pVDZ basis sets to look for the existence of intramolecular hydrogen bonding, in them from the red shift and infrared absorption intensity enhancement of the bonded O-H band compared to that of the free O-H hand. Equilibrium population analysis With 10 conformers of 1,2-ED and 1,4-BD at experimental temperatures were-carried out for the reconstruction of the Observed vibrational spectra at that temperature,using standard statistical relationships. The most abundant conformer at experimental temperatures, was identified. In 1,2-ED a red shift of 45 cm(-1) in the intramolecularly interacting O-H stretching vibrational band position and no significant intensity enhancement compared to that of-the free O-H have been observed. On the contrary, in one of the hydrogen bonded conformers of 1,4-BD, a 124 cm(-1) red shift in the O-H stretching frequency and 8.5 times-intensity enhancement for the ``bonded'' O-H compared to that of the ``free'' O-H is seen. On the basis of this comparative study, we have concluded that strong intramolecular hydrogen bonding exists in 1,4-BD. But there appears, to be weak intramolecular hydrogen bonding in 1,2-ED at temperatures of 303, 313, and 323 Km the gas phase We have found that most stable hydrogen-bonded conformers of 1,4-BD are less populated than some of the non-hydrogen-bonded conformers. Even for the 1,4-BD, the relative population of the g'GG'Gt conformer, which has a strong intramolecular,hydrogen bond, is less than what is predicted. Perhaps the intramolecular hydrogen bond plays a less Significant role in the relative stability,of the various Conformers than what has been predicted from calculations and prevails in the literature.
Resumo:
DNA intercalators are one of the interesting groups in cancer chemotherapy. The development of novel anticancer small molecule has gained remarkable interest over the last decade. In this study, we synthesized and investigated the ability of a tetracyclic-condensed quinoline compound, 4-butylaminopyrimido4',5':4,5]thieno(2,3-b)quinoline (BPTQ), to interact with double-stranded DNA and inhibit cancer cell proliferation. Circular dichroism, topological studies, molecular docking, absorbance, and fluorescence spectral titrations were employed to study the interaction of BPTQ with DNA. Cytotoxicity was studied by performing 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and lactate dehydrogenase (LDH) assay. Further, cell cycle analysis by flow cytometry, annexin V staining, mitochondrial membrane potential assay, DNA fragmentation, and western blot analysis were used to elucidate the mechanism of action of BPTQ at the cellular level. Spectral, topological, and docking studies confirmed that BPTQ is a typical intercalator of DNA. BPTQ induces dose-dependent inhibitory effect on the proliferation of cancer cells by arresting cells at S and G2/M phase. Further, BPTQ activates the mitochondria-mediated apoptosis pathway, as explicated by a decrease in mitochondrial membrane potential, increase in the Bax:Bcl-2 ratio, and activation of caspases. These results confirmed that BPTQ is a DNA intercalative anticancer molecule, which could aid in the development of future cancer therapeutic agents.