85 resultados para Information search – models
Resumo:
The standard quantum search algorithm lacks a feature, enjoyed by many classical algorithms, of having a fixed-point, i.e. a monotonic convergence towards the solution. Here we present two variations of the quantum search algorithm, which get around this limitation. The first replaces selective inversions in the algorithm by selective phase shifts of $\frac{\pi}{3}$. The second controls the selective inversion operations using two ancilla qubits, and irreversible measurement operations on the ancilla qubits drive the starting state towards the target state. Using $q$ oracle queries, these variations reduce the probability of finding a non-target state from $\epsilon$ to $\epsilon^{2q+1}$, which is asymptotically optimal. Similar ideas can lead to robust quantum algorithms, and provide conceptually new schemes for error correction.
Resumo:
In this paper we review the most peculiar and interesting information-theoretic and communications features of fading channels. We first describe the statistical models of fading channels which are frequently used in the analysis and design of communication systems. Next, we focus on the information theory of fading channels, by emphasizing capacity as the most important performance measure. Both single-user and multiuser transmission are examined. Further, we describe how the structure of fading channels impacts code design, and finally overview equalization of fading multipath channels.
Resumo:
In this paper, we deal with low-complexity near-optimal detection/equalization in large-dimension multiple-input multiple-output inter-symbol interference (MIMO-ISI) channels using message passing on graphical models. A key contribution in the paper is the demonstration that near-optimal performance in MIMO-ISI channels with large dimensions can be achieved at low complexities through simple yet effective simplifications/approximations, although the graphical models that represent MIMO-ISI channels are fully/densely connected (loopy graphs). These include 1) use of Markov random field (MRF)-based graphical model with pairwise interaction, in conjunction with message damping, and 2) use of factor graph (FG)-based graphical model with Gaussian approximation of interference (GAI). The per-symbol complexities are O(K(2)n(t)(2)) and O(Kn(t)) for the MRF and the FG with GAI approaches, respectively, where K and n(t) denote the number of channel uses per frame, and number of transmit antennas, respectively. These low-complexities are quite attractive for large dimensions, i.e., for large Kn(t). From a performance perspective, these algorithms are even more interesting in large-dimensions since they achieve increasingly closer to optimum detection performance for increasing Kn(t). Also, we show that these message passing algorithms can be used in an iterative manner with local neighborhood search algorithms to improve the reliability/performance of M-QAM symbol detection.
Resumo:
Many of the research institutions and universities across the world are facilitating open-access (OA) to their intellectual outputs through their respective OA institutional repositories (IRs) or through the centralized subject-based repositories. The registry of open access repositories (ROAR) lists more than 2850 such repositories across the world. The awareness about the benefits of OA to scholarly literature and OA publishing is picking up in India, too. As per the ROAR statistics, to date, there are more than 90 OA repositories in the country. India is doing particularly well in publishing open-access journals (OAJ). As per the directory of open-access journals (DOAJ), to date, India with 390 OAJs, is ranked 5th in the world in terms of numbers of OAJs being published. Much of the research done in India is reported in the journals published from India. These journals have limited readership and many of them are not being indexed by Web of Science, Scopus or other leading international abstracting and indexing databases. Consequently, research done in the country gets hidden not only from the fellow countrymen, but also from the international community. This situation can be easily overcome if all the researchers facilitate OA to their publications. One of the easiest ways to facilitate OA to scientific literature is through the institutional repositories. If every research institution and university in India set up an open-access IR and ensure that copies of the final accepted versions of all the research publications are uploaded in the IRs, then the research done in India will get far better visibility. The federation of metadata from all the distributed, interoperable OA repositories in the country will serve as a window to the research done across the country. Federation of metadata from the distributed OAI-compliant repositories can be easily achieved by setting up harvesting software like the PKP Harvester. In this paper, we share our experience in setting up a prototype metadata harvesting service using the PKP harvesting software for the OAI-compliant repositories in India.
Resumo:
The Ulam’s problem is a two person game in which one of the player tries to search, in minimum queries, a number thought by the other player. Classically the problem scales polynomially with the size of the number. The quantum version of the Ulam’s problem has a query complexity that is independent of the dimension of the search space. The experimental implementation of the quantum Ulam’s problem in a Nuclear Magnetic Resonance Information Processor with 3 quantum bits is reported here.
Resumo:
Experimental conditions or the presence of interacting components can lead to variations in the structural models of macromolecules. However, the role of these factors in conformational selection is often omitted by in silico methods to extract dynamic information from protein structural models. Structures of small peptides, considered building blocks for larger macromolecular structural models, can substantially differ in the context of a larger protein. This limitation is more evident in the case of modeling large multi-subunit macromolecular complexes using structures of the individual protein components. Here we report an analysis of variations in structural models of proteins with high sequence similarity. These models were analyzed for sequence features of the protein, the role of scaffolding segments including interacting proteins or affinity tags and the chemical components in the experimental conditions. Conformational features in these structural models could be rationalized by conformational selection events, perhaps induced by experimental conditions. This analysis was performed on a non-redundant dataset of protein structures from different SCOP classes. The sequence-conformation correlations that we note here suggest additional features that could be incorporated by in silico methods to extract dynamic information from protein structural models.
Resumo:
Heat shock protein information resource (HSPIR) is a concerted database of six major heat shock proteins (HSPs), namely, Hsp70, Hsp40, Hsp60, Hsp90, Hsp100 and small HSP. The HSPs are essential for the survival of all living organisms, as they protect the conformations of proteins on exposure to various stress conditions. They are a highly conserved group of proteins involved in diverse physiological functions, including de novo folding, disaggregation and protein trafficking. Moreover, their critical role in the control of disease progression made them a prime target of research. Presently, limited information is available on HSPs in reference to their identification and structural classification across genera. To that extent, HSPIR provides manually curated information on sequence, structure, classification, ontology, domain organization, localization and possible biological functions extracted from UniProt, GenBank, Protein Data Bank and the literature. The database offers interactive search with incorporated tools, which enhances the analysis. HSPIR is a reliable resource for researchers exploring structure, function and evolution of HSPs.
Resumo:
Our everyday visual experience frequently involves searching for objects in clutter. Why are some searches easy and others hard? It is generally believed that the time taken to find a target increases as it becomes similar to its surrounding distractors. Here, I show that while this is qualitatively true, the exact relationship is in fact not linear. In a simple search experiment, when subjects searched for a bar differing in orientation from its distractors, search time was inversely proportional to the angular difference in orientation. Thus, rather than taking search reaction time (RT) to be a measure of target-distractor similarity, we can literally turn search time on its head (i.e. take its reciprocal 1/RT) to obtain a measure of search dissimilarity that varies linearly over a large range of target-distractor differences. I show that this dissimilarity measure has the properties of a distance metric, and report two interesting insights come from this measure: First, for a large number of searches, search asymmetries are relatively rare and when they do occur, differ by a fixed distance. Second, search distances can be used to elucidate object representations that underlie search - for example, these representations are roughly invariant to three-dimensional view. Finally, search distance has a straightforward interpretation in the context of accumulator models of search, where it is proportional to the discriminative signal that is integrated to produce a response. This is consistent with recent studies that have linked this distance to neuronal discriminability in visual cortex. Thus, while search time remains the more direct measure of visual search, its reciprocal also has the potential for interesting and novel insights. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
We consider a visual search problem studied by Sripati and Olson where the objective is to identify an oddball image embedded among multiple distractor images as quickly as possible. We model this visual search task as an active sequential hypothesis testing problem (ASHT problem). Chernoff in 1959 proposed a policy in which the expected delay to decision is asymptotically optimal. The asymptotics is under vanishing error probabilities. We first prove a stronger property on the moments of the delay until a decision, under the same asymptotics. Applying the result to the visual search problem, we then propose a ``neuronal metric'' on the measured neuronal responses that captures the discriminability between images. From empirical study we obtain a remarkable correlation (r = 0.90) between the proposed neuronal metric and speed of discrimination between the images. Although this correlation is lower than with the L-1 metric used by Sripati and Olson, this metric has the advantage of being firmly grounded in formal decision theory.
Resumo:
This article considers a class of deploy and search strategies for multi-robot systems and evaluates their performance. The application framework used is deployment of a system of autonomous mobile robots equipped with required sensors in a search space to gather information. The lack of information about the search space is modelled as an uncertainty density distribution. The agents are deployed to maximise single-step search effectiveness. The centroidal Voronoi configuration, which achieves a locally optimal deployment, forms the basis for sequential deploy and search (SDS) and combined deploy and search (CDS) strategies. Completeness results are provided for both search strategies. The deployment strategy is analysed in the presence of constraints on robot speed and limit on sensor range for the convergence of trajectories with corresponding control laws responsible for the motion of robots. SDS and CDS strategies are compared with standard greedy and random search strategies on the basis of time taken to achieve reduction in the uncertainty density below a desired level. The simulation experiments reveal several important issues related to the dependence of the relative performances of the search strategies on parameters such as the number of robots, speed of robots and their sensor range limits.
Resumo:
The problem of identifying user intent has received considerable attention in recent years, particularly in the context of improving the search experience via query contextualization. Intent can be characterized by multiple dimensions, which are often not observed from query words alone. Accurate identification of Intent from query words remains a challenging problem primarily because it is extremely difficult to discover these dimensions. The problem is often significantly compounded due to lack of representative training sample. We present a generic, extensible framework for learning the multi-dimensional representation of user intent from the query words. The approach models the latent relationships between facets using tree structured distribution which leads to an efficient and convergent algorithm, FastQ, for identifying the multi-faceted intent of users based on just the query words. We also incorporated WordNet to extend the system capabilities to queries which contain words that do not appear in the training data. Empirical results show that FastQ yields accurate identification of intent when compared to a gold standard.
Resumo:
Energy harvesting sensor networks provide near perpetual operation and reduce carbon emissions thereby supporting `green communication'. We study such a sensor node powered with an energy harvesting source. We obtain energy management policies that are throughput optimal. We also obtain delay-optimal policies. Next we obtain the Shannon capacity of such a system. Further we combine the information theoretic and queuing theoretic approaches to obtain the Shannon capacity of an energy harvesting sensor node with a data queue. Then we generalize these results to models with fading and energy consumption in activities other than transmission.
Resumo:
This paper primarily intends to develop a GIS (geographical information system)-based data mining approach for optimally selecting the locations and determining installed capacities for setting up distributed biomass power generation systems in the context of decentralized energy planning for rural regions. The optimal locations within a cluster of villages are obtained by matching the installed capacity needed with the demand for power, minimizing the cost of transportation of biomass from dispersed sources to power generation system, and cost of distribution of electricity from the power generation system to demand centers or villages. The methodology was validated by using it for developing an optimal plan for implementing distributed biomass-based power systems for meeting the rural electricity needs of Tumkur district in India consisting of 2700 villages. The approach uses a k-medoid clustering algorithm to divide the total region into clusters of villages and locate biomass power generation systems at the medoids. The optimal value of k is determined iteratively by running the algorithm for the entire search space for different values of k along with demand-supply matching constraints. The optimal value of the k is chosen such that it minimizes the total cost of system installation, costs of transportation of biomass, and transmission and distribution. A smaller region, consisting of 293 villages was selected to study the sensitivity of the results to varying demand and supply parameters. The results of clustering are represented on a GIS map for the region.
Resumo:
Identifying the determinants of neuronal energy consumption and their relationship to information coding is critical to understanding neuronal function and evolution. Three of the main determinants are cell size, ion channel density, and stimulus statistics. Here we investigate their impact on neuronal energy consumption and information coding by comparing single-compartment spiking neuron models of different sizes with different densities of stochastic voltage-gated Na+ and K+ channels and different statistics of synaptic inputs. The largest compartments have the highest information rates but the lowest energy efficiency for a given voltage-gated ion channel density, and the highest signaling efficiency (bits spike(-1)) for a given firing rate. For a given cell size, our models revealed that the ion channel density that maximizes energy efficiency is lower than that maximizing information rate. Low rates of small synaptic inputs improve energy efficiency but the highest information rates occur with higher rates and larger inputs. These relationships produce a Law of Diminishing Returns that penalizes costly excess information coding capacity, promoting the reduction of cell size, channel density, and input stimuli to the minimum possible, suggesting that the trade-off between energy and information has influenced all aspects of neuronal anatomy and physiology.
Resumo:
Bisimulation-based information flow properties were introduced by Focardi and Gorrieri [1] as a way of specifying security properties for transition system models. These properties were shown to be decidable for finite-state systems. In this paper, we study the problem of verifying these properties for some well-known classes of infinite state systems. We show that all the properties are undecidable for each of these classes of systems.