76 resultados para INFORMATION NETWORKS


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we study the diversity-multiplexing-gain tradeoff (DMT) of wireless relay networks under the half-duplex constraint. It is often unclear what penalty if any, is imposed by the half-duplex constraint on the DMT of such networks. We study two classes of networks; the first class, called KPP(I) networks, is the class of networks with the relays organized in K parallel paths between the source and the destination. While we assume that there is no direct source-destination path, the K relaying paths can interfere with each other. The second class, termed as layered networks, is comprised of relays organized in layers, where links exist only between adjacent layers. We present a communication scheme based on static schedules and amplify-and-forward relaying for these networks. We also show that for KPP(I) networks with K >= 3, the proposed schemes can achieve full-duplex DMT performance, thus demonstrating that there is no performance hit on the DMT due to the half-duplex constraint. We also show that, for layered networks, a linear DMT of d(max)(1 - r)(+) between the maximum diversity d(max) and the maximum MG, r(max) = 1 is achievable. We adapt existing DMT optimal coding schemes to these networks, thus specifying the end-to-end communication strategy explicitly.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many networks such as social networks and organizational networks in global companies consist of self-interested agents. The topology of these networks often plays a crucial role in important tasks such as information diffusion and information extraction. Consequently, growing a stable network having a certain topology is of interest. Motivated by this, we study the following important problem: given a certain desired network topology, under what conditions would best response (link addition/deletion) strategies played by self-interested agents lead to formation of a stable network having that topology. We study this interesting reverse engineering problem by proposing a natural model of recursive network formation and a utility model that captures many key features. Based on this model, we analyze relevant network topologies and derive a set of sufficient conditions under which these topologies emerge as pairwise stable networks, wherein no node wants to delete any of its links and no two nodes would want to create a link between them.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Motivated by the observation that communities in real world social networks form due to actions of rational individuals in networks, we propose a novel game theory inspired algorithm to determine communities in networks. The algorithm is decentralized and only uses local information at each node. We show the efficacy of the proposed algorithm through extensive experimentation on several real world social network data sets.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The algebraic formulation for linear network coding in acyclic networks with each link having an integer delay is well known. Based on this formulation, for a given set of connections over an arbitrary acyclic network with integer delay assumed for the links, the output symbols at the sink nodes at any given time instant is a Fq-linear combination of the input symbols across different generations, where Fq denotes the field over which the network operates. We use finite-field discrete Fourier transform (DFT) to convert the output symbols at the sink nodes at any given time instant into a Fq-linear combination of the input symbols generated during the same generation. We call this as transforming the acyclic network with delay into n-instantaneous networks (n is sufficiently large). We show that under certain conditions, there exists a network code satisfying sink demands in the usual (non-transform) approach if and only if there exists a network code satisfying sink demands in the transform approach. Furthermore, assuming time invariant local encoding kernels, we show that the transform method can be employed to achieve half the rate corresponding to the individual source-destination mincut (which are assumed to be equal to 1) for some classes of three-source three-destination multiple unicast network with delays using alignment strategies when the zero-interference condition is not satisfied.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The broadcast nature of the wireless medium jeopardizes secure transmissions. Cryptographic measures fail to ensure security when eavesdroppers have superior computational capability; however, it can be assured from information theoretic security approaches. We use physical layer security to guarantee non-zero secrecy rate in single source, single destination multi-hop networks with eavesdroppers for two cases: when eavesdropper locations and channel gains are known and when their positions are unknown. We propose a two-phase solution which consists of finding activation sets and then obtaining transmit powers subject to SINR constraints for the case when eavesdropper locations are known. We introduce methods to find activation sets and compare their performance. Necessary but reasonable approximations are made in power minimization formulations for tractability reasons. For scenarios with no eavesdropper location information, we suggest vulnerability region (the area having zero secrecy rate) minimization over the network. Our results show that in the absence of location information average number of eavesdroppers who have access to data is reduced.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Metabolism is a defining feature of life, and its study is important to understand how a cell works, alterations that lead to disease and for applications in drug discovery. From a systems perspective, metabolism can be represented as a network that captures all the metabolites as nodes and the inter-conversions among pairs of them as edges. Such an abstraction enables the networks to be studied by applying graph theory, particularly, to infer the flow of chemical information in the networks by identifying relevant metabolic pathways. In this study, different weighting schemes are used to illustrate that appropriately weighted networks can capture the quantitative cellular dynamics quite accurately. Thus, the networks now combine the elegance and simplicity of representation of the system and ease of analysing metabolic graphs. Metabolic routes or paths determined by this therefore are likely to be more biologically meaningful. The usefulness of the approach is demonstrated with two examples, first for understanding bacterial stress response and second for studying metabolic alterations that occurs in cancer cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The algebraic formulation for linear network coding in acyclic networks with the links having integer delay is well known. Based on this formulation, for a given set of connections over an arbitrary acyclic network with integer delay assumed for the links, the output symbols at the sink nodes, at any given time instant, is a F(p)m-linear combination of the input symbols across different generations, where F(p)m denotes the field over which the network operates (p is prime and m is a positive integer). We use finite-field discrete Fourier transform to convert the output symbols at the sink nodes, at any given time instant, into a F(p)m-linear combination of the input symbols generated during the same generation without making use of memory at the intermediate nodes. We call this as transforming the acyclic network with delay into n-instantaneous networks (n is sufficiently large). We show that under certain conditions, there exists a network code satisfying sink demands in the usual (nontransform) approach if and only if there exists a network code satisfying sink demands in the transform approach. When the zero-interference conditions are not satisfied, we propose three precoding-based network alignment (PBNA) schemes for three-source three-destination multiple unicast network with delays (3-S 3-D MUN-D) termed as PBNA using transform approach and time-invariant local encoding coefficients (LECs), PBNA using time-varying LECs, and PBNA using transform approach and block time-varying LECs. We derive sets of necessary and sufficient conditions under which throughputs close to n' + 1/2n' + 1, n'/2n' + 1, and n'/2n' + 1 are achieved for the three source-destination pairs in a 3-S 3-D MUN-D employing PBNA using transform approach and time-invariant LECs, and PBNA using transform approach and block time-varying LECs, where n' is a positive integer. For PBNA using time-varying LECs, we obtain a sufficient condition under which a throughput demand of n(1)/n, n(2)/n, and n(3)/n can be met for the three source-destination pairs in a 3-S 3-D MUN-D, where n(1), n(2), and n(3) are positive integers less than or equal to the positive integer n. This condition is also necessary when n(1) + n(3) = n(1) + n(2) = n where n(1) >= n(2) >= n(3).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The problem of delay-constrained, energy-efficient broadcast in cooperative wireless networks is NP-complete. While centralised setting allows some heuristic solutions, designing heuristics in distributed implementation poses significant challenges. This is more so in wireless sensor networks (WSNs) where nodes are deployed randomly and topology changes dynamically due to node failure/join and environment conditions. This paper demonstrates that careful design of network infrastructure can achieve guaranteed delay bounds and energy-efficiency, and even meet quality of service requirements during broadcast. The paper makes three prime contributions. First, we present an optimal lower bound on energy consumption for broadcast that is tighter than what has been previously proposed. Next, iSteiner, a lightweight, distributed and deterministic algorithm for creation of network infrastructure is discussed. iPercolate is the algorithm that exploits this structure to cooperatively broadcast information with guaranteed delivery and delay bounds, while allowing real-time traffic to pass undisturbed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, space-shift keying (SSK) is considered for multihop multiple-input-multiple-output (MIMO) networks. In SSK, only one among n(s) = 2(m) available transmit antennas, chosen on the basis of m information bits, is activated during transmission. We consider two different systems of multihop co-operation, where each node has multiple antennas and employs SSK. In system I, a multihop diversity relaying scheme is considered. In system II, a multihop multibranch relaying scheme is considered. In both systems, we adopt decode-and-forward (DF) relaying, where each relay forwards the signal only when it correctly decodes. We analyze the end-to-end bit error rate (BER) and diversity order of both the systems with SSK. For binary SSK (n(s) = 2), our analytical BER expression is exact, and our numerical results show that the BERs evaluated through the analytical expression overlap with those obtained through Monte Carlo simulations. For nonbinary SSK (n(s) > 2), we derive an approximate BER expression, where the analytically evaluated BER results closely follow the simulated BER results. We show the comparison of the BERs of SSK and conventional phase-shift keying (PSK) and also show the instances where SSK outperforms PSK. We also present the diversity analyses for SSK in systems I and II, which predict the achievable diversity orders as a function of system parameters.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We consider optimal power allocation policies for a single server, multiuser system. The power is consumed in transmission of data only. The transmission channel may experience multipath fading. We obtain very efficient, low computational complexity algorithms which minimize power and ensure stability of the data queues. We also obtain policies when the users may have mean delay constraints. If the power required is a linear function of rate then we exploit linearity and obtain linear programs with low complexity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this letter, we propose a scheme to improve the secrecy rate of cooperative networks using Analog Network Coding (ANC). ANC mixes the signals in the air; the desired signal is then separated out, from the mixed signals, at the legitimate receiver using techniques like self interference subtraction and signal nulling, thereby achieving better secrecy rates. Assuming global channel state information, memoryless adversaries and the decode-and-forward strategy, we seek to maximize the average secrecy rate between the source and the destination, subject to an overall power budget. Then, exploiting the structure of the optimization problem, we compute its optimal solution. Finally, we use numerical evaluations to compare our scheme with the conventional approaches.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We address the problem of passive eavesdroppers in multi-hop wireless networks using the technique of friendly jamming. The network is assumed to employ Decode and Forward (DF) relaying. Assuming the availability of perfect channel state information (CSI) of legitimate nodes and eavesdroppers, we consider a scheduling and power allocation (PA) problem for a multiple-source multiple-sink scenario so that eavesdroppers are jammed, and source-destination throughput targets are met while minimizing the overall transmitted power. We propose activation sets (AS-es) for scheduling, and formulate an optimization problem for PA. Several methods for finding AS-es are discussed and compared. We present an approximate linear program for the original nonlinear, non-convex PA optimization problem, and argue that under certain conditions, both the formulations produce identical results. In the absence of eavesdroppers' CSI, we utilize the notion of Vulnerability Region (VR), and formulate an optimization problem with the objective of minimizing the VR. Our results show that the proposed solution can achieve power-efficient operation while defeating eavesdroppers and achieving desired source-destination throughputs simultaneously. (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The current day networks use Proactive networks for adaption to the dynamic scenarios. The use of cognition technique based on the Observe, Orient, Decide and Act loop (OODA) is proposed to construct proactive networks. The network performance degradation in knowledge acquisition and malicious node presence is a problem that exists. The use of continuous time dynamic neural network is considered to achieve cognition. The variance in service rates of user nodes is used to detect malicious activity in heterogeneous networks. The improved malicious node detection rates are proved through the experimental results presented in this paper. (C) 2015 The Authors. Published by Elsevier B.V.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The problem of cooperative beamforming for maximizing the achievable data rate of an energy constrained two-hop amplify-and-forward (AF) network is considered. Assuming perfect channel state information (CSI) of all the nodes, we evaluate the optimal scaling factor for the relay nodes. Along with individual power constraint on each of the relay nodes, we consider a weighted sum power constraint. The proposed iterative algorithm initially solves a set of relaxed problems with weighted sum power constraint and then updates the solution to accommodate individual constraints. These relaxed problems in turn are solved using a sequence of Quadratic Eigenvalue Problems (QEP). The key contribution of this letter is the generalization of cooperative beamforming to incorporate both the individual and weighted sum constraint. Furthermore, we have proposed a novel algorithm based on Quadratic Eigenvalue Problem (QEP) and discussed its convergence.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Campaigners are increasingly using online social networking platforms for promoting products, ideas and information. A popular method of promoting a product or even an idea is incentivizing individuals to evangelize the idea vigorously by providing them with referral rewards in the form of discounts, cash backs, or social recognition. Due to budget constraints on scarce resources such as money and manpower, it may not be possible to provide incentives for the entire population, and hence incentives need to be allocated judiciously to appropriate individuals for ensuring the highest possible outreach size. We aim to do the same by formulating and solving an optimization problem using percolation theory. In particular, we compute the set of individuals that are provided incentives for minimizing the expected cost while ensuring a given outreach size. We also solve the problem of computing the set of individuals to be incentivized for maximizing the outreach size for given cost budget. The optimization problem turns out to be non trivial; it involves quantities that need to be computed by numerically solving a fixed point equation. Our primary contribution is, that for a fairly general cost structure, we show that the optimization problems can be solved by solving a simple linear program. We believe that our approach of using percolation theory to formulate an optimization problem is the first of its kind. (C) 2016 Elsevier B.V. All rights reserved.