66 resultados para ILL requests


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A Field Programmable Gate Array (FPGA) based hardware accelerator for multi-conductor parasitic capacitance extraction, using Method of Moments (MoM), is presented in this paper. Due to the prohibitive cost of solving a dense algebraic system formed by MoM, linear complexity fast solver algorithms have been developed in the past to expedite the matrix-vector product computation in a Krylov sub-space based iterative solver framework. However, as the number of conductors in a system increases leading to a corresponding increase in the number of right-hand-side (RHS) vectors, the computational cost for multiple matrix-vector products present a time bottleneck, especially for ill-conditioned system matrices. In this work, an FPGA based hardware implementation is proposed to parallelize the iterative matrix solution for multiple RHS vectors in a low-rank compression based fast solver scheme. The method is applied to accelerate electrostatic parasitic capacitance extraction of multiple conductors in a Ball Grid Array (BGA) package. Speed-ups up to 13x over equivalent software implementation on an Intel Core i5 processor for dense matrix-vector products and 12x for QR compressed matrix-vector products is achieved using a Virtex-6 XC6VLX240T FPGA on Xilinx's ML605 board.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Virtualization is one of the key enabling technologies for Cloud computing. Although it facilitates improved utilization of resources, virtualization can lead to performance degradation due to the sharing of physical resources like CPU, memory, network interfaces, disk controllers, etc. Multi-tenancy can cause highly unpredictable performance for concurrent I/O applications running inside virtual machines that share local disk storage in Cloud. Disk I/O requests in a typical Cloud setup may have varied requirements in terms of latency and throughput as they arise from a range of heterogeneous applications having diverse performance goals. This necessitates providing differential performance services to different I/O applications. In this paper, we present PriDyn, a novel scheduling framework which is designed to consider I/O performance metrics of applications such as acceptable latency and convert them to an appropriate priority value for disk access based on the current system state. This framework aims to provide differentiated I/O service to various applications and ensures predictable performance for critical applications in multi-tenant Cloud environment. We demonstrate through experimental validations on real world I/O traces that this framework achieves appreciable enhancements in I/O performance, indicating that this approach is a promising step towards enabling QoS guarantees on Cloud storage.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Compressive Sensing (CS) theory combines the signal sampling and compression for sparse signals resulting in reduction in sampling rate. In recent years, many recovery algorithms have been proposed to reconstruct the signal efficiently. Subspace Pursuit and Compressive Sampling Matching Pursuit are some of the popular greedy methods. Also, Fusion of Algorithms for Compressed Sensing is a recently proposed method where several CS reconstruction algorithms participate and the final estimate of the underlying sparse signal is determined by fusing the estimates obtained from the participating algorithms. All these methods involve solving a least squares problem which may be ill-conditioned, especially in the low dimension measurement regime. In this paper, we propose a step prior to least squares to ensure the well-conditioning of the least squares problem. Using Monte Carlo simulations, we show that in low dimension measurement scenario, this modification improves the reconstruction capability of the algorithm in clean as well as noisy measurement cases.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The calculation of First Passage Time (moreover, even its probability density in time) has so far been generally viewed as an ill-posed problem in the domain of quantum mechanics. The reasons can be summarily seen in the fact that the quantum probabilities in general do not satisfy the Kolmogorov sum rule: the probabilities for entering and non-entering of Feynman paths into a given region of space-time do not in general add up to unity, much owing to the interference of alternative paths. In the present work, it is pointed out that a special case exists (within quantum framework), in which, by design, there exists one and only one available path (i.e., door-way) to mediate the (first) passage -no alternative path to interfere with. Further, it is identified that a popular family of quantum systems - namely the 1d tight binding Hamiltonian systems - falls under this special category. For these model quantum systems, the first passage time distributions are obtained analytically by suitably applying a method originally devised for classical (stochastic) mechanics (by Schroedinger in 1915). This result is interesting especially given the fact that the tight binding models are extensively used in describing everyday phenomena in condense matter physics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Human provisioning of wildlife with food is a widespread global practice that occurs in multiple socio-cultural circumstances. Provisioning may indirectly alter ecosystem functioning through changes in the eco-ethology of animals, but few studies have quantified this aspect. Provisioning of primates by humans is known to impact their activity budgets, diets and ranging patterns. Primates are also keystone species in tropical forests through their role as seed dispersers; yet there is no information on how provisioning might affect primate ecological functions. The rhesus macaque is a major human-commensal species but is also an important seed disperser in the wild. In this study, we investigated the potential impacts of provisioning on the role of rhesus macaques as seed dispersers in the Buxa Tiger Reserve, India. We studied a troop of macaques which were provisioned for a part of the year and were dependent on natural resources for the rest. We observed feeding behaviour, seed handling techniques and ranging patterns of the macaques and monitored availability of wild fruits. Irrespective of fruit availability, frugivory and seed dispersal activities decreased when the macaques were provisioned. Provisioned macaques also had shortened daily ranges implying shorter dispersal distances. Finally, during provisioning periods, seeds were deposited on tarmac roads that were unconducive for germination. Provisioning promotes human-primate conflict, as commensal primates are often involved in aggressive encounters with humans over resources, leading to negative consequences for both parties involved. Preventing or curbing provisioning is not an easy task as feeding wild animals is a socio-cultural tradition across much of South and South-East Asia, including India. We recommend the initiation of literacy programmes that educate lay citizens about the ill-effects of provisioning and strongly caution them against the practice.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Three-dimensional (3-D) full-wave electromagnetic simulation using method of moments (MoM) under the framework of fast solver algorithms like fast multipole method (FMM) is often bottlenecked by the speed of convergence of the Krylov-subspace-based iterative process. This is primarily because the electric field integral equation (EFIE) matrix, even with cutting-edge preconditioning techniques, often exhibits bad spectral properties arising from frequency or geometry-based ill-conditioning, which render iterative solvers slow to converge or stagnate occasionally. In this communication, a novel technique to expedite the convergence of MoMmatrix solution at a specific frequency is proposed, by extracting and applying Eigen-vectors from a previously solved neighboring frequency in an augmented generalized minimum residual (AGMRES) iterative framework. This technique can be applied in unison with any preconditioner. Numerical results demonstrate up to 40% speed-up in convergence using the proposed Eigen-AGMRES method.