121 resultados para Hot filament CVD


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The characteristics of hot deformation of beta-quenched Zr-2.5Nb-0.5Cu in the temperature range 650-1050 degrees C and in the strain rate range 0.001-100 s(-1) have been studied using hot compression testing. For this study, the approach of processing maps has been adopted and their interpretation done using the Dynamic Materials Model. The efficiency of power dissipation given by [2m/(m + 1)], where m is strain rate sensitivity, is plotted as a function of temperature and strain rate to obtain a processing map. The processing map for Zr-2.5Nb-0.5Cu within (alpha + beta) phase field showed a domain of dynamic recrystallization, occurring by shearing of alpha-platelets followed by spheroidization, with a peak efficiency of 48% at 750 degrees C and 0.001 s(-1). The stress-strain curves in this domain had features of continuous flow softening and all these are similar to that in Zr-2.5Nb alloy. In the beta-phase field, a second domain with a peak efficiency of 47% occurred at 1050 degrees C and 0.001 s(-1) and this domain is correlated with the superplasticity of beta-phase. The beta-deformation characteristics of this alloy are similar to that observed in pure beta-zirconium with large grain size. Analysis of flow instabilities using a continuum criterion revealed that the Zr-2.5Nb-0.5Cu exhibits flow localization at temperatures higher than 800 degrees C and strain rates higher than about 30 s(-1) and that the addition of copper to Zr-2.5Nb reduces its susceptibility to flow instability, particularly in the (alpha + beta) phase field.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The development of microstructure in 316L stainless steel during industrial hot forming operations including press forging (strain rate of 0 . 15 s(-1)), rolling/extrusion (strain rate of 2-8 . 8 s(-1)), and hammer forging (strain rate of 100 s(-1)) at different temperatures in the range 600-1200 degrees C was studied with a view to validating the predictions of the processing map. The results showed that good col relation existed between the regimes indicated in the map and the product microstructures. The 316L stainless steel exhibited unstable flow in the form of flow localisation when hammer forged at temperatures above 900 degrees C, rolled below 1000 degrees C, or press forged below 900 degrees C. All these conditions must therefore be avoided in mechanical processing of the material. Conversely, in order to obtain defect free microstructures, ideally the material should be rolled at temperatures above 1100 degrees C, press forged at temperatures above 1000 degrees C, or hammer forged in the temperature range 600-900 degrees C. (C) 1996 The Institute of Materials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The influence of strain rate and state-of-stress on the formation of ferrite in stainless steel type AISI 304L, 304 and 304 as-cast, during hot working has been studied. Compression and torsion tests were conducted in the temperature range 1100 to 1250 degrees C and strain rate range 0.001 to 100 s(-1) on these materials, Ferrite formation occurs during deformation at temperatures above 1150 degrees C and strain rates above 10 s(-1), in stainless steel type AISI 304L and 304. The tendency for the formation of ferrite is more in as-cast 304 than in wrought 304, In as-cast 304 the ferrite forms at lower temperatures and strain rates, The tendency for the ferrite formation is more in torsion than in compression.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The hot deformation behavior of hot isostatically pressed (HIP) NIMONIC AP-1 superalloy is characterized using processing maps in the temperature range 950-degrees-C to 1200-degrees-C and strain rate range 0.001 to 100 s-1. The dynamic materials model has been used for developing the processing maps which show the variation of the efficiency of power dissipation given by [2m/(m +1)] with temperature and strain rate, with m being the strain rate sensitivity of flow stress. The processing map revealed a domain of dynamic recrystallization with a peak efficiency of 40 pct at 1125-degrees-C and 0.3 s-1, and these are the optimum parameters for hot working. The microstructure developed under these conditions is free from prior particle boundary (PPB) defects, cracks, or localized shear bands. At 100 s-1 and 1200-degrees-C, the material exhibits inter-crystalline cracking, while at 0.001 s-1, the material shows wedge cracks at 1200-degrees-C and PPB cracking at 1000-degrees-C. Also at strain rates higher than 10 s-1, adiabatic shear bands occur; the limiting conditions for this flow instability are accurately predicted by a continuum criterion based on the principles of irreversible thermodynamics of large plastic flow.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The constitutive flow behavior of a metal matrix composite (MMC) with 2124 aluminum containing 20 vol pct silicon carbide particulates under hot-working conditions in the temperature range of 300 °C to 550 °C and strain-rate range of 0.001 to 1 s-1 has been studied using hot compression testing. Processing maps depicting the variation of the efficiency of power dissipation given by [2m/(m + 1)] (wherem is the strain-rate sensitivity of flow stress) with temperature and strain rate have been established for the MMC as well as for the matrix material. The maps have been interpreted on the basis of the Dynamic Materials Model (DMM). [3] The MMC exhibited a domain of superplasticity in the temperature range of 450 °C to 550 °C and at strain rates less than 0.1 s-1. At 500 °C and 1 s-1 strain rate, the MMC undergoes dynamic recrystallization (DRX), resulting in a reconstitution of microstructure. In comparison with the map for the matrix material, the DRX domain occurred at a strain rate higher by three orders of magnitude. At temperatures lower than 400 °C, the MMC exhibited dynamic recovery, while at 550 °C and 1 s-1, cracking occurred at the prior particle boundaries (representing surfaces of the initial powder particles). The optimum temperature and strain-rate combination for billet conditioning of the MMC is 500 °C and 1 s-1, while secondary metalworking may be done in the super- plasticity domain. The MMC undergoes microstructural instability at temperatures lower than 400 °C and strain rates higher than 0.1 s-1.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The hot workability of an Al-Mg-Si alloy has been studied by conducting constant strain-rate compression tests. The temperature range and strain-rate regime selected for the present study were 300-550 degrees C and 0.001-1 s(-1), respectively. On the basis of true stress data, the strain-rate sensitivity values were calculated and used for establishing processing maps following the dynamic materials model. These maps delineate characteristic domains of different dissipative mechanisms. Two domains of dynamic recrystallization (DRX) have been identified which are associated with the peak efficiency of power dissipation (34%) and complete reconstitution of as-cast microstructure. As a result, optimum hot ductility is achieved in the DRX domains. The strain rates at which DRX domains occur are determined by the second-phase particles such as Mg2Si precipitates and intermetallic compounds. The alloy also exhibits microstructural instability in the form of localized plastic deformation in the temperature range 300-350 degrees C and at strain rate 1 s(-1).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Deformation processing and microstructural development of an alpha(2)/O aluminide alloy Ti-25Al-15Nb (at.%) was studied in the temperature range of 950 to 1200 degrees C and strain rate range of 10(-3) to 100 s(-1). Regions of processing and instability were identified using dynamic materials model. Dynamic recrystallization (DRX) of alpha(2)/O phase and p phase were seen to occur in the region of 950 to 1050 degrees C/0.001 to 0.05 s(-1) and 1125 to 1175 degrees C/0.001 to 0.1 s(-1), respectively. Unstable flow was seen to occur in the region of 1050 to 1190 degrees C/10 to 100 s(-1). Thermal activation analysis showed that DRX of alpha(2)/O and beta was controlled by cross-slip.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper deals with the development of a new model for the cooling process on the runout table of hot strip mills, The suitability of different numerical methods for the solution of the proposed model equation from the point of view of accuracy and computation time are studied, Parallel solutions for the model equation are proposed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using a dynamic materials model, processing and instability maps have been developed for near-alpha titanium alloy 685 in the temperature range 775-1025 degrees C and strain-rate range of 0.001-10 s(-1) to optimise its hot workability. The alloy's beta-transus temperature lies at about 1020 degrees C. The material undergoes superplasticity with a peak efficiency of 80% at 975 degrees C and 0.001 s(-1), which are the optimum parameters for alpha-beta working. The occurrence of superplasticity is attributed to two-phase microduplex structure, higher strain-rate sensitivity, low flow stress and sigmoidal variation between log flow stress and log strain rate. The material also exhibits how localisation due to adiabatic shear-band formation up to its beta-transus temperature with strain rates greater than 0.02 s(-1) and thus cracking along these regions. (C) 1997 Published by Elsevier Science S.A.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Unstable flow during hot deformation of an alpha(2) titanium aluminide alloy Ti-24Al-20Nb alloy was analysed using two criteria, one of which was developed by Jonas and the other by Kalyankumar. Workability maps were constructed using the alpha parameter as suggested by Semiatin and Lahoti and instability maps were constructed based on the stability parameter xi(epsilon) as suggested by Kalyankumar. Microstructural study was carried out on deformed specimens to validate the two criteria. The results of the two criteria were compared. The particular case of highly negative alpha values has been discussed in detail and it is shown that these correspond to regions of unstable flow.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Metalorganic complexes of copper have been synthesized by modifying the ligand in the beta-diketonate class of compounds. Detailed thermal analysis of several beta-diketonate complexes of copper has been carried out to evaluate their suitability as precursors for chemical vapor deposition (CVD). A comparison of their relative volatilities has been made by determining their sublimation rates at different temperatures. Thermal analyses of these complexes reveal significant differences among their volatilities and decomposition patterns.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Deposition of Al2O3 coatings by CVD is of importance because they are often used as abrading material in cemented carbide cutting tools. The conventionally used CVD process for Al2O3 involves the corrosive reactant AlCl3. In this paper, we report on the thermal characterisation of the metalorganic precursors namely aluminium tristetramethyl-heptanedionate [Al(thd)(3)] and aluminium tris-acetylacetonate [Al(acac)(3)] and their application to the CVD of Al2O3 films. Crystalline Al2O3 films were deposited by MOCVD at low temperatures by the pyrolysis of Al(thd)(3) and Al(acac)(3). The films were deposited on a TiN-coated tungsten carbide (TiN/WC) and Si(100) substrates in the temperature range 500-1100degreesC. The as-deposited films were characterised by x-ray diffraction, optical microscopy, scanning and transmission electron microscopy, Auger electron spectroscopy. The observed crystallinity of films grown at low temperatures, their microstructure, and composition may be interpreted in terms of a growth process that involves the melting of the metalorganic precursor on the hot growth surface.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Low-pressure MOCVD, with tris(2,4 pentanedionato)aluminum(III) as the precursor, was used in the present investigation to coat alumina on to cemented carbide cutting tools. To evaluate the MOCVD process, the efficiency in cutting operations of MOCVD-coated tools was compared with that of tools coated using the industry-standard CVD process.Three multilayer cemented carbide cutting tool inserts, viz., TiN/TiC/WC, CVD-coated Al2O3 on TiN/TiC/WC, and MOCVD-coated Al2O3 on TiN/TiC/WC, were compared in the dry turning of mild steel. Turning tests were conducted for cutting speeds ranging from 14 to 47 m/min, for a depth of cut from 0.25 to 1 mm, at the constant feed rate of 0.2 mm/min. The axial, tangential, and radial forces were measured using a lathe tool dynamometer for different cutting parameters, and the machined work pieces were tested for surface roughness. The results indicate that, in most of the cases examined, the MOCVD-coated inserts produced a smoother surface finish, while requiring lower cutting forces, indicating that MOCVD produces the best-performing insert, followed by the CVD-coated one. The superior performance of MOCVD-alumina is attributed to the co-deposition of carbon with the oxide, due to the very nature of the precursor used, leading to enhanced mechanical properties for cutting applications in harsh environment.