147 resultados para Horo-tight immersion
Resumo:
The problem of guessing a random string is revisited. The relation-ship between guessing without distortion and compression is extended to the case when source alphabet size is countably in¯nite. Further, similar relationship is established for the case when distortion allowed by establishing a tight relationship between rate distortion codes and guessing strategies.
Resumo:
Cobalt and iron nanoparticles are doped in carbon nanotube (CNT)/polymer matrix composites and studied for strain and magnetic field sensing properties. Characterization of these samples is done for various volume fractions of each constituent (Co and Fe nanoparticles and CNTs) and also for cases when only either of the metallic components is present. The relation between the magnetic field and polarization-induced strain are exploited. The electronic bandgap change in the CNTs is obtained by a simplified tight-binding formulation in terms of strain and magnetic field. A nonlinear constitutive model of glassy polymer is employed to account for (1) electric bias field dependent softening/hardening (2) CNT orientations as a statistical ensemble and (3) CNT volume fraction. An effective medium theory is then employed where the CNTs and nanoparticles are treated as inclusions. The intensity of the applied magnetic field is read indirectly as the change in resistance of the sample. Very small magnetic fields can be detected using this technique since the resistance is highly sensitive to strain. Its sensitivity due to the CNT volume fraction is also discussed. The advantage of this sensor lies in the fact that it can be molded into desirable shape and can be used in fabrication of embedded sensors where the material can detect external magnetic fields on its own. Besides, the stress-controlled hysteresis of the sample can be used in designing memory devices. These composites have potential for use in magnetic encoders, which are made of a magnetic field sensor and a barcode.
Resumo:
We present two online algorithms for maintaining a topological order of a directed acyclic graph as arcs are added, and detecting a cycle when one is created. Our first algorithm takes O(m 1/2) amortized time per arc and our second algorithm takes O(n 2.5/m) amortized time per arc, where n is the number of vertices and m is the total number of arcs. For sparse graphs, our O(m 1/2) bound improves the best previous bound by a factor of logn and is tight to within a constant factor for a natural class of algorithms that includes all the existing ones. Our main insight is that the two-way search method of previous algorithms does not require an ordered search, but can be more general, allowing us to avoid the use of heaps (priority queues). Instead, the deterministic version of our algorithm uses (approximate) median-finding; the randomized version of our algorithm uses uniform random sampling. For dense graphs, our O(n 2.5/m) bound improves the best previously published bound by a factor of n 1/4 and a recent bound obtained independently of our work by a factor of logn. Our main insight is that graph search is wasteful when the graph is dense and can be avoided by searching the topological order space instead. Our algorithms extend to the maintenance of strong components, in the same asymptotic time bounds.
Resumo:
Today's feature-rich multimedia products require embedded system solution with complex System-on-Chip (SoC) to meet market expectations of high performance at a low cost and lower energy consumption. The memory architecture of the embedded system strongly influences critical system design objectives like area, power and performance. Hence the embedded system designer performs a complete memory architecture exploration to custom design a memory architecture for a given set of applications. Further, the designer would be interested in multiple optimal design points to address various market segments. However, tight time-to-market constraints enforces short design cycle time. In this paper we address the multi-level multi-objective memory architecture exploration problem through a combination of exhaustive-search based memory exploration at the outer level and a two step based integrated data layout for SPRAM-Cache based architectures at the inner level. We present a two step integrated approach for data layout for SPRAM-Cache based hybrid architectures with the first step as data-partitioning that partitions data between SPRAM and Cache, and the second step is the cache conscious data layout. We formulate the cache-conscious data layout as a graph partitioning problem and show that our approach gives up to 34% improvement over an existing approach and also optimizes the off-chip memory address space. We experimented our approach with 3 embedded multimedia applications and our approach explores several hundred memory configurations for each application, yielding several optimal design points in a few hours of computation on a standard desktop.
Resumo:
Field emission from carbon nanotubes (CNTs) in the form of arrays or thin films give rise to several strongly correlated process of electromechanical interaction and degradation. Such processes are mainly due to (1) electron-phonon interaction (2) electromechanical force field leading to stretching of CNTs (3) ballistic transport induced thermal spikes, coupled with high dynamic stress, leading to degradation of emission performance at the device scale. Fairly detailed physics based models of CNTs considering the aspects (1) and (2) above have already been developed by these authors, and numerical results indicate good agreement with experimental results. What is missing in such a system level modeling approach is the incorporation of structural defects and vacancies or charge impurities. This is a practical and important problem due to the fact that degradation of field emission performance is indeed observed in experimental I-V curves. What is not clear from these experiments is whether such degradation in the I-V response is due to dynamic reorientation of the CNTs or due to the defects or due to both of these effects combined. Non-equilibrium Green’s function based simulations using a tight-binding Hamiltonian for single CNT segment show up the localization of carrier density at various locations of the CNTs. About 11% decrease in the drive current with steady difference in the drain current in the range of 0.2-0.4V of the gate voltage was reported in literature when negative charge impurity was introduced at various locations of the CNT over a length of ~20nm. In the context of field emission from CNT tips, a simplistic estimate of defects have been introduced by a correction factor in the Fowler-Nordheim formulae. However, a more detailed physics based treatment is required, while at the same time the device-scale simulation is necessary. The novelty of our present approach is the following. We employ a concept of effective stiffness degradation for segments of CNTs, which is due to structural defects, and subsequently, we incorporate the vacancy defects and charge impurity effects in the Green’s function based approach. Field emission induced current-voltage characteristics of a vertically aligned CNT array on a Cu-Cr substrate is then simulated using a detailed nonlinear mechanistic model of CNTs coupled with quantum hydrodynamics. An array of 10 vertically aligned and each 12 m long CNTs is considered for the device scale analysis. Defect regions are introduced randomly over the CNT length. The result shows the decrease in the longitudinal strain due to defects. Contrary to the expected influence of purely mechanical degradation, this result indicates that the charge impurity and hence weaker transport can lead to a different electromechanical force field, which ultimately can reduce the strain. However, there could be significant fluctuation in such strain field due to electron-phonon coupling. The effect of such fluctuations (with defects) is clearly evident in the field emission current history. The average current also decreases significantly due to such defects.
Resumo:
A energy-insensitive explicit guidance design is proposed in this paper by appending newlydeveloped nonlinear model predictive static programming technique with dynamic inversion, which render a closed form solution of the necessary guidance command update. The closed form nature of the proposed optimal guidance scheme suppressed the computational difficulties, and facilitate realtime solution. The guidance law is successfully verified in a solid motor propelled long range flight vehicle, for which developing an effective guidance law is more difficult as compared to a liquid engine propelled vehicle, mainly because of the absence of thrust cutoff facility. The scheme guides the vehicle appropriately so that it completes the mission within a tight error bound assuming that the starting point of the second stage to be a deterministic point beyond the atmosphere. The simulation results demonstrate its ability to intercept the target, even with an uncertainty of greater than 10% in the burnout time
Resumo:
The resolution of the digital signal path has a crucial impact on the design, performance and the power dissipation of the radio receiver data path, downstream from the ADC. The ADC quantization noise has been traditionally included with the Front End receiver noise in calculating the SNR as well as BER for the receiver. Using the IEEE 802.15.4 as an example, we show that this approach leads to an over-design for the ADC and the digital signal path, resulting in larger power. More accurate specifications for the front-end design can be obtained by making SNRreg a function of signal resolutions. We show that lower resolution signals provide adequate performance and quantization noise alone does not produce any bit-error. We find that a tight bandpass filter preceding the ADC can relax the resolution requirement and a 1-bit ADC degrades SNR by only 1.35 dB compared to 8-bit ADC. Signal resolution has a larger impact on the synchronization and a 1-bit ADC costs about 5 dB in SNR to maintain the same level of performance as a 8-bit ADC.
Resumo:
A "plan diagram" is a pictorial enumeration of the execution plan choices of a database query optimizer over the relational selectivity space. We have shown recently that, for industrial-strength database engines, these diagrams are often remarkably complex and dense, with a large number of plans covering the space. However, they can often be reduced to much simpler pictures, featuring significantly fewer plans, without materially affecting the query processing quality. Plan reduction has useful implications for the design and usage of query optimizers, including quantifying redundancy in the plan search space, enhancing useability of parametric query optimization, identifying error-resistant and least-expected-cost plans, and minimizing the overheads of multi-plan approaches. We investigate here the plan reduction issue from theoretical, statistical and empirical perspectives. Our analysis shows that optimal plan reduction, w.r.t. minimizing the number of plans, is an NP-hard problem in general, and remains so even for a storage-constrained variant. We then present a greedy reduction algorithm with tight and optimal performance guarantees, whose complexity scales linearly with the number of plans in the diagram for a given resolution. Next, we devise fast estimators for locating the best tradeoff between the reduction in plan cardinality and the impact on query processing quality. Finally, extensive experimentation with a suite of multi-dimensional TPCH-based query templates on industrial-strength optimizers demonstrates that complex plan diagrams easily reduce to "anorexic" (small absolute number of plans) levels incurring only marginal increases in the estimated query processing costs.
Resumo:
Today's feature-rich multimedia products require embedded system solution with complex System-on-Chip (SoC) to meet market expectations of high performance at a low cost and lower energy consumption. The memory architecture of the embedded system strongly influences these parameters. Hence the embedded system designer performs a complete memory architecture exploration. This problem is a multi-objective optimization problem and can be tackled as a two-level optimization problem. The outer level explores various memory architecture while the inner level explores placement of data sections (data layout problem) to minimize memory stalls. Further, the designer would be interested in multiple optimal design points to address various market segments. However, tight time-to-market constraints enforces short design cycle time. In this paper we address the multi-level multi-objective memory architecture exploration problem through a combination of Multi-objective Genetic Algorithm (Memory Architecture exploration) and an efficient heuristic data placement algorithm. At the outer level the memory architecture exploration is done by picking memory modules directly from a ASIC memory Library. This helps in performing the memory architecture exploration in a integrated framework, where the memory allocation, memory exploration and data layout works in a tightly coupled way to yield optimal design points with respect to area, power and performance. We experimented our approach for 3 embedded applications and our approach explores several thousand memory architecture for each application, yielding a few hundred optimal design points in a few hours of computation time on a standard desktop.
Resumo:
Combining the newly developed nonlinear model predictive static programming technique with null range direction concept, a novel explicit energy-insensitive guidance design method is presented in this paper for long range flight vehicles, which leads to a closed form solution of the necessary guidance command update. Owing to the closed form nature, it does not lead to computational difficulties and the proposed optimal guidance algorithm can be implemented online. The guidance law is verified in a solid motor propelled long range flight vehicle, for which coming up with an effective guidance law is more difficult as compared to a liquid engine propelled vehicle (mainly because of the absence of thrust cutoff facility). Assuming the starting point of the second stage to be a deterministic point beyond the atmosphere, the scheme guides the vehicle properly so that it completes the mission within a tight error bound. The simulation results demonstrate its ability to intercept the target, even with an uncertainty of greater than 10% in burnout time.
Resumo:
A k-dimensional box is a Cartesian product R(1)x...xR(k) where each R(i) is a closed interval on the real line. The boxicity of a graph G, denoted as box(G), is the minimum integer k such that G can be represented as the intersection graph of a collection of k-dimensional boxes. That is, two vertices are adjacent if and only if their corresponding boxes intersect. A circular arc graph is a graph that can be represented as the intersection graph of arcs on a circle. We show that if G is a circular arc graph which admits a circular arc representation in which no arc has length at least pi(alpha-1/alpha) for some alpha is an element of N(>= 2), then box(G) <= alpha (Here the arcs are considered with respect to a unit circle). From this result we show that if G has maximum degree Delta < [n(alpha-1)/2 alpha] for some alpha is an element of N(>= 2), then box(G) <= alpha. We also demonstrate a graph having box(G) > alpha but with Delta = n (alpha-1)/2 alpha + n/2 alpha(alpha+1) + (alpha+2). For a proper circular arc graph G, we show that if Delta < [n(alpha-1)/alpha] for some alpha is an element of N(>= 2), then box(G) <= alpha. Let r be the cardinality of the minimum overlap set, i.e. the minimum number of arcs passing through any point on the circle, with respect to some circular arc representation of G. We show that for any circular arc graph G, box(G) <= r + 1 and this bound is tight. We show that if G admits a circular arc representation in which no family of k <= 3 arcs covers the circle, then box(G) <= 3 and if G admits a circular arc representation in which no family of k <= 4 arcs covers the circle, then box(G) <= 2. We also show that both these bounds are tight.
Resumo:
We give an efficient randomized algorithm to construct a box representation of any graph G on n vertices in $1.5 (\Delta + 2) \ln n$ dimensions, where $\Delta$ is the maximum degree of G. We also show that $\boxi(G) \le (\Delta + 2) \ln n$ for any graph G. Our bound is tight up to a factor of $\ln n$. We also show that our randomized algorithm can be derandomized to get a polynomial time deterministic algorithm. Though our general upper bound is in terms of maximum degree $\Delta$, we show that for almost all graphs on n vertices, its boxicity is upper bound by $c\cdot(d_{av} + 1) \ln n$ where d_{av} is the average degree and c is a small constant. Also, we show that for any graph G, $\boxi(G) \le \sqrt{8 n d_{av} \ln n}$, which is tight up to a factor of $b \sqrt{\ln n}$ for a constant b.
Resumo:
We describe here a minimal theory of tight-binding electrons moving on the square planar Cu lattice of the hole-doped cuprates and mixed quantum mechanically with their own Cooper pairs. The superconductivity occurring at the transition temperature T(c) is the long-range, d-wave symmetry phase coherence of these Cooper pairs. Fluctuations, necessarily associated with incipient long-range superconducting order, have a generic large-distance behavior near T(c). We calculate the spectral density of electrons coupled to such Cooper-pair fluctuations and show that features observed in angle resolved photoemission spectroscopy (ARPES) experiments on different cuprates above T(c) as a function of doping and temperature emerge naturally in this description. These include ``Fermi arcs'' with temperature-dependent length and an antinodal pseudogap, which fills up linearly as the temperature increases toward the pseudogap temperature. Our results agree quantitatively with experiment. Below T(c), the effects of nonzero superfluid density and thermal fluctuations are calculated and compared successfully with some recent ARPES experiments, especially the observed bending or deviation of the superconducting gap from the canonical d-wave form.
Resumo:
We consider the one-way relay aided MIMO X fading Channel where there are two transmitters and two receivers along with a relay with M antennas at every node. Every transmitter wants to transmit messages to every other receiver. The relay broadcasts to the receivers along a noisy link which is independent of the transmitters channel. In literature, this is referred to as a relay with orthogonal components. We derive an upper bound on the degrees of freedom of such a network. Next we show that the upper bound is tight by proposing an achievability scheme based on signal space alignment for the same for M = 2 antennas at every node.
Resumo:
Evaluation of the probability of error in decision feedback equalizers is difficult due to the presence of a hard limiter in the feedback path. This paper derives the upper and lower bounds on the probability of a single error and multiple error patterns. The bounds are fairly tight. The bounds can also be used to select proper tap gains of the equalizer.