128 resultados para High Speed.


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Wettability gradient surfaces play a significant role in control and manipulation of liquid drops. The present work deals with the analysis of water drops impacting onto the junction line between hydrophobic texture and hydrophilic smooth portions of a dual-textured substrate made using stainless steel material. The hydrophobic textured portion of the substrate comprised of unidirectional parallel groove-like and pillar-like structures of uniform dimensions. A high-speed video camera recorded the spreading and receding dynamics of impacting drops. The drop impact dynamics during the early inertia driven impact regime remains unaffected by the dual-texture feature of the substrate. A larger retraction speed of drop liquid observed on the hydrophobic portion of the substrate during the impact of low velocity drops makes the drop liquid on the higher wettability portion to advance further (secondary drop spreading). The net horizontal drop velocity towards the hydrophilic portion of the dual-textured substrate decreases with increasing drop impact velocity. The available experimental results suggest that the movement of bulk drop liquid away from the impact point during drop impact on the dual-textured substrate is larger for the impact of low inertia drops. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The dynamics of solvation of newly created charged species in dense dipolar liquids can proceed at a high speed with time constants often in the subpicosecond domain. The motion of the solvent molecules can be in the inertial limit at such short times. In this paper we present a microscopic study of the effects of inertial motion of solvent molecules on the solvation dynamics of a newly created ion in a model dipolar liquid. Interesting dynamical behavior emerges when the relative contribution of the translational modes in the wave-vector-dependent longitudinal relaxation time is significant. Especially, the theory predicts that the time correlation function of the solvation energy can become oscillatory in some limiting situations. In general, the dynamics becomes faster in the presence of the inertial contribution. We discuss the experimental situations where the inertial effects can be noticeable.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

An experimental setup using radiative heating has been used to understand the thermo-physical phenomena and chemical transformations inside acoustically levitated cerium nitrate precursor droplets. In this transformation process, through infrared thermography and high speed imaging, events such as vaporization, precipitation and chemical reaction have been recorded at high temporal resolution, leading to nanoceria formation with a porous morphology. The cerium nitrate droplet undergoes phase and shape changes throughout the vaporization process. Four distinct stages were delineated during the entire vaporization process namely pure evaporation, evaporation with precipitate formation, chemical reaction with phase change and formation of final porous precipitate. The composition was examined using scanning and transmission electron microscopy that revealed nanostructures and confirmed highly porous morphology with trapped gas pockets. Transmission electron microscopy (TEM) and high speed imaging of the final precipitate revealed the presence of trapped gases in the form of bubbles. TEM also showed the presence of nanoceria crystalline structures at 70 degrees C. The current study also looked into the effect of different heating powers on the process. At higher power, each phase is sustained for smaller duration and higher maximum temperature. In addition, the porosity of the final precipitate increased with power. A non-dimensional time scale is proposed to correlate the effect of laser intensity and vaporization rate of the solvent (water). The effect of acoustic levitation was also studied. Due to acoustic streaming, the solute selectively gets transported to the bottom portion of the droplet due to strong circulation, providing it rigidity and allows it become bowl shaped. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Context. Polar corona is often explored to find the energy source for the acceleration of the fast solar wind. Earlier observations show omni-presence of quasi-periodic disturbances, traveling outward, which is believed to be caused by the ubiquitous presence of outward propagating waves. These waves, mostly of compressional type, might provide the additional momentum and heat required for the fast solar wind acceleration. It has been conjectured that these disturbances are not due to waves but high speed plasma outflows, which are difficult to distinguish using the current available techniques. Aims. With the unprecedented high spatial and temporal resolution of AIA/SDO, we search for these quasi-periodic disturbances in both plume and interplume regions of the polar corona. We investigate their nature of propagation and search for a plausible interpretation. We also aim to study their multi-thermal nature by using three different coronal passbands of AIA. Methods. We chose several clean plume and interplume structures and studied the time evolution of specific channels by making artificial slits along them. Taking the average across the slits, space-time maps are constructed and then filtration techniques are applied to amplify the low-amplitude oscillations. To suppress the effect of fainter jets, we chose wider slits than usual. Results. In almost all the locations chosen, in both plume and interplume regions we find the presence of propagating quasi-periodic disturbances, of periodicities ranging from 10-30 min. These are clearly seen in two channels and in a few cases out to very large distances (approximate to 250 `') off-limb, almost to the edge of the AIA field of view. The propagation speeds are in the range of 100-170 km s(-1). The average speeds are different for different passbands and higher in interplume regions. Conclusions. Propagating disturbances are observed, even after removing the effects of jets and are insensitive to changes in slit width. This indicates that a coherent mechanism is involved. In addition, the observed propagation speed varies between the different passpands, implying that these quasi-periodic intensity disturbances are possibly due to magneto-acoustic waves. The propagation speeds in interplume region are higher than in the plume region.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ultrasound has been widely used by chemists to enhance yields as well as rates of homogeneous as well as heterogeneous chemical reactions. The effect of ultrasound on the course of chemical reactions is mediated through cavitation bubbles it generates. High temperatures and pressures are attained inside the cavitating bubbles when they collapse. The extreme conditions so generated lead to the formation of reactive intermediates, e.g., free radiacls, inside the bubbles, which cause chemical reactions to occur when they enter the surrounding liquid. This is the mechanism through which ultrasound influences the path of homogeneous reactions. The cavitation bubbles collapse asymmetrically in the vicinity of solids, e.g., catalyst particles. Asymmetric collapse lead to formation of high speed microjets. The microjets can enhance transport rates, the increase surface area through pitting as well as particle fragmentation through collisions. Both can alter the rates of heterogeneous reaction rates. It however appears that these effects do not exhaust the scope of the influence of ultrasound on heterogeneous reactions. Modelling and quantitative prediction of the effect of ultrasound on chemical reactions is however at a stage of infancy as the phenomena are complex. Only a few examples of modelling exist in literature. Apart from this, reactor design and scaleup pose significant problems. Thus sonochemical reaction engineering offers large scope for research and development efforts.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Shock waves are one of the most efficient mechanisms of energy dissipation observed in nature. In this study, utilizing the instantaneous mechanical impulse generated behind a micro-shock wave during a controlled explosion, a novel nonintrusive needleless vaccine delivery system has been developed. It is well-known that antigens in the epidermis are efficiently presented by resident Langerhans cells, eliciting the requisite immune response, making them a good target for vaccine delivery. Unfortunately, needle-free devices for epidermal delivery have inherent problems from the perspective of the safety and comfort of the patient. The penetration depth of less than 100 mu m in the skin can elicit higher immune response without any pain. Here we show the efficient utilization of our needleless device (that uses micro-shock waves) for vaccination. The production of liquid jet was confirmed by high-speed microscopy, and the penetration in acrylamide gel and mouse skin was observed by confocal microscopy. Salmonella enterica serovar Typhimurium vaccine strain pmrG-HM-D (DV-STM-07) was delivered using our device in the murine salmonellosis model, and the effectiveness of the delivery system for vaccination was compared with other routes of vaccination. Vaccination using our device elicits better protection and an IgG response even at a lower vaccine dose (10-fold less) compared to other routes of vaccination. We anticipate that our novel method can be utilized for effective, cheap, and safe vaccination in the near future.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper reports new results concerning the capabilities of a family of service disciplines aimed at providing per-connection end-to-end delay (and throughput) guarantees in high-speed networks. This family consists of the class of rate-controlled service disciplines, in which traffic from a connection is reshaped to conform to specific traffic characteristics, at every hop on its path. When used together with a scheduling policy at each node, this reshaping enables the network to provide end-to-end delay guarantees to individual connections. The main advantages of this family of service disciplines are their implementation simplicity and flexibility. On the other hand, because the delay guarantees provided are based on summing worst case delays at each node, it has also been argued that the resulting bounds are very conservative which may more than offset the benefits. In particular, other service disciplines such as those based on Fair Queueing or Generalized Processor Sharing (GPS), have been shown to provide much tighter delay bounds. As a result, these disciplines, although more complex from an implementation point-of-view, have been considered for the purpose of providing end-to-end guarantees in high-speed networks. In this paper, we show that through ''proper'' selection of the reshaping to which we subject the traffic of a connection, the penalty incurred by computing end-to-end delay bounds based on worst cases at each node can be alleviated. Specifically, we show how rate-controlled service disciplines can be designed to outperform the Rate Proportional Processor Sharing (RPPS) service discipline. Based on these findings, we believe that rate-controlled service disciplines provide a very powerful and practical solution to the problem of providing end-to-end guarantees in high-speed networks.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Basic Local Alignment Search Tool (BLAST) is one of the most widely used sequence alignment programs with which similarity searches, for both protein and nucleic acid sequences, can be performed against large databases at high speed. A large number of tools exist for processing BLAST output, but none of them provide three-dimensional structure visualization. This shortcoming has been addressed in the proposed tool BLAST Server for Structural Biologists (BSSB), which maps a BLAST output onto the three-dimensional structure of the subject protein. The three-dimensional structure of the subject protein is represented using a three-color coding scheme (identical: red; similar: yellow; and mismatch: white) based on the pairwise alignment obtained. Thus, the user will be able to visualize a possible three-dimensional structure for the query protein sequence. This information can be used to gain a deeper insight into the sequence-structure correlation. Furthermore, the additional structure-level information enables the user to make coherent and logical decisions regarding the type of input model structure or fragment that can be used for molecular replacement calculations. This tool is freely available to all users at http://bioserver1.physics.iisc.ernet.in/bssb/.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Recent advances in nonsilica fiber technology have prompted the development of suitable materials for devices operating beyond 1.55 mu m. The III-V ternaries and quaternaries (AlGaIn)(AsSb) lattice matched to GaSb seem to be the obvious choice and have turned out to be promising candidates for high speed electronic and long wavelength photonic devices. Consequently, there has been tremendous upthrust in research activities of GaSb-based systems. As a matter of fact, this compound has proved to be an interesting material for both basic and applied research. At present, GaSb technology is in its infancy and considerable research has to be carried out before it can be employed for large scale device fabrication. This article presents an up to date comprehensive account of research carried out hitherto. It explores in detail the material aspects of GaSb starting from crystal growth in bulk and epitaxial form, post growth material processing to device feasibility. An overview of the lattice, electronic, transport, optical and device related properties is presented. Some of the current areas of research and development have been critically reviewed and their significance for both understanding the basic physics as well as for device applications are addressed. These include the role of defects and impurities on the structural, optical and electrical properties of the material, various techniques employed for surface and bulk defect passivation and their effect on the device characteristics, development of novel device structures, etc. Several avenues where further work is required in order to upgrade this III-V compound for optoelectronic devices are listed. It is concluded that the present day knowledge in this material system is sufficient to understand the basic properties and what should be more vigorously pursued is their implementation for device fabrication. (C) 1997 American Institute of Physics.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper discusses the parallel implementation of the solution of a set of linear equations using the Alternative Quadrant Interlocking Factorisation Methods (AQIF), on a star topology. Both the AQIF and LU decomposition methods are mapped onto star topology on an IBM SP2 system, with MPI as the internode communicator. Performance parameters such as speedup, efficiency have been obtained through experimental and theoretical means. The studies demonstrate (i) a mismatch of 15% between the theoretical and experimental results, (ii) scalability of the AQIF algorithm, and (iii) faster executing AQIF algorithm.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The prime focus of this study is to design a 50 mm internal diameter diaphragmless shock tube that can be used in an industrial facility for repeated loading of shock waves. The instantaneous rise in pressure and temperature of a medium can be used in a variety of industrial applications. We designed, fabricated and tested three different shock wave generators of which one system employs a highly elastic rubber membrane and the other systems use a fast acting pneumatic valve instead of conventional metal diaphragms. The valve opening speed is obtained with the help of a high speed camera. For shock generation systems with a pneumatic cylinder, it ranges from 0.325 to 1.15 m/s while it is around 8.3 m/s for the rubber membrane. Experiments are conducted using the three diaphragmless systems and the results obtained are analyzed carefully to obtain a relation between the opening speed of the valve and the amount of gas that is actually utilized in the generation of the shock wave for each system. The rubber membrane is not suitable for industrial applications because it needs to be replaced regularly and cannot withstand high driver pressures. The maximum shock Mach number obtained using the new diaphragmless system that uses the pneumatic valve is 2.125 +/- 0.2%. This system shows much promise for automation in an industrial environment.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A high speed photographic technique has been employed to measure the Sauter mean diameter of bubbles experimentally in a gas liquid ejector using a sodium chloride-air system. The measured values are compared with the theoretically predicted maximum bubble size diameter using Sprow's correlation. Bubble size as a function of the liquid flow rate and also of its distance from the throat of the ejector has been reported in this paper. The results obtained for this non-reactive system are also compared with those obtained earlier for the air-water system.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background: Fighter pilots are frequently exposed to high temperatures during high-speed low-level flight. Heat strain can result in temporary impairment of cognitive functions and when severe, loss of consciousness and consequent loss of life and equipment. Induction of stress proteins is a highly conserved stress response mechanism from bacteria to humans. induced stress protein levels are known to be cytoprotective and have been correlated with stress tolerance. Although many studies on the heat shock response mechanisms have been performed in cell culture and animal model systems, there is very limited information on stress protein induction in human subjects. Hypothesis: Heat shock proteins (Hsp), especially Hsp70, may be induced in human subjects exposed to high temperatures in a hot cockpit designed to simulate heat stress experienced in low flying sorties. Methods: Six healthy volunteers were subjected to heat stress at 55degreesC in a high temperature cockpit simulator for a period of 1 h at 30% humidity. Physiological parameters such as oral and skin temperatures, heart rate, and sweat rate were monitored regularly during this time. The level of Hsp70 in leukocytes was examined before and after the heat exposure in each subject. Conclusions: Hsp70 was found to be significantly induced in all the six subjects exposed to heat stress. The level of induced Hsp70 appears to correlate with other strain indicators such as accumulative circulatory strain and Craig's modified index. The usefulness of Hsp70 as a molecular marker of heat stress in humans is discussed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coronal holes are the coolest and darkest regions of the upper solar atmosphere, as observed both on the solar disk and above the solar limb. Coronal holes are associated with rapidly expanding open magnetic fields and the acceleration of the high-speed solar wind. During the years of the solar minima, coronal holes are generally confined to the Sun's polar regions, while at solar maxima they can also be found at lower latitudes. Waves, observed via remote sensing and detected in-situ in the wind streams, are most likely responsible for the wind and several theoretical models describe the role of MHD waves in the acceleration of the fast solar wind. This paper reviews the observational evidences of detection of propagating waves in these regions. The characteristics of the waves, like periodicities, amplitude, speed provide input parameters and also act as constraints on theoretical models of coronal heating and solar wind acceleration.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Spray formation in ambient atmosphere from gas-centered swirl coaxial atomizers is described by carrying out experiments in a spray test facility. The atomizer discharges a circular air jet and an axisymmetric swirling water sheet from its coaxially arranged inner and outer orifices. A high-speed digital imaging system along with a backlight illumination arrangement is employed to record the details of liquid sheet breakup and spray development. Spray regimes exhibiting different sheet breakup mechanisms are identified and their characteristic features presented. The identified spray regimes are wave-assisted sheet breakup, perforated sheet breakup, segmented sheet breakup, and pulsation spray regime. In the regime of wave-assisted sheet breakup, the sheet breakup shows features similar to the breakup of two-dimensional planar air-blasted liquid sheets. At high air-to-liquid momentum ratios, the interaction process between the axisymmetric swirling liquid sheet and the circular air jet develops spray processes which are more specific to the atomizer studied here. The spray exhibits a periodic ejection of liquid masses whose features are dominantly controlled by the central air jet.