140 resultados para Heat equation in finance


Relevância:

100.00% 100.00%

Publicador:

Resumo:

An existence theorem is obtained for a generalized Hammerstein type equation

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The solitary-wavelike solution of the generalized Korteweg-de Vries equation with mixed nonlinearity is obtained. Two asymptotic cases of the solution have been discussed and solitary wave solutions have been derived. ©1974 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A zonally averaged version of the Goddard Laboratory for Atmospheric Sciences (GLAS) climate model is used to study the sensitivity of the northern hemisphere (NH) summer mean meridional circulation to changes in the large scale eddy forcing. A standard solution is obtained by prescribing the latent heating field and climatological horizontal transports of heat and momentum by the eddies. The radiative heating and surface fluxes are calculated by model parameterizations. This standard solution is compared with the results of several sensitivity studies. When the eddy forcing is reduced to 0.5 times or increased to 1.5 times the climatological values, the strength of the Ferrel cells decrease or increase proportionally. It is also seen that such changes in the eddy forcing can influence the strength of theNH Hadley cell significantly. Possible impact of such changes in the large scale eddy forcing on the monsoon circulation via changes in the Hadley circulation is discussed. Sensitivity experiments including only one component of eddy forcing at a time show that the eddy momentum fluxes seem to be more important in maintaining the Ferrel cells than the eddy heat fluxes. In the absence of the eddy heat fluxes, the observed eddy momentum fluxes alone produce subtropical westerly jets which are weaker than those in the standard solution. On the other hand, the observed eddy heat fluxes alone produce subtropical westerly jets which are stronger than those in the standard solution.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A method has been presented for constructing non-separable solutions of homogeneous linear partial differential equations of the type F(D, D′)W = 0, where D = ∂/∂x, D′ = ∂/∂y, Image where crs are constants and n stands for the order of the equation. The method has also been extended for equations of the form Φ(D, D′, D″)W = 0, where D = ∂/∂x, D′ = ∂/∂y, D″ = ∂/∂z and Image As illustration, the method has been applied to obtain nonseparable solutions of the two and three dimensional Helmholtz equations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The nonlinear singular integral equation of transonic flow is examined in the free-stream Mach number range where only solutions with shocks are known to exist. It is shown that, by the addition of an artificial viscosity term to the integral equation, even the direct iterative scheme, with the linear solution as the initial iterate, leads to convergence. Detailed tables indicating how the solution varies with changes in the parameters of the artificial viscosity term are also given. In the best cases (when the artificial viscosity is smallest), the solutions compare well with known results, their characteristic feature being the representation of the shock by steep gradients rather than by abrupt discontinuities. However, 'sharp-shock solutions' have also been obtained by the implementation of a quadratic iterative scheme with the 'artificial viscosity solution' as the initial iterate; the converged solution with a sharp shock is obtained with only a few more iterates. Finally, a review is given of various shock-capturing and shock-fitting schemes for the transonic flow equations in general, and for the transonic integral equation in particular, frequent comparisons being made with the approach of this paper.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The solitary-wavelike solution of the generalized Korteweg-de Vries equation with mixed nonlinearity is obtained. Two asymptotic cases of the solution have been discussed and solitary wave solutions have been derived.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The authors derive the Korteweg-de Vries equation in a multicomponent plasma that includes any number of positive and negative ions. The solitary wave solutions are also found explicitly for the case of isothermal and non-isothermal electrons.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A generalized isothermal effectiveness factor correlation has been proposed for catalytic reactions whose intrinsic kinetics are based on the redox model. In this correlation which is exact for asymptotic values of the Thiele parameter the effect of the parameters appearing in the model, the order of the reaction and particle geometry are incorporated in a modified form of Thiele parameter. The relationship takes the usual form: Image and predicts effectiveness factor with an error of less than 2% in a range of Thiele parameter that accommodates both the kinetic and diffusion control regimes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An exact aerodynamic noise equation is formulated for Newtonian fluids. The cause−effect problem is discussed. Finally, the importance of external additions of mass, momentum, and energy is examined. Physics of Fluids is copyrighted by The American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The surface water waves are "modal" waves in which the "physical space" (t, x, y, z) is the product of a propagation space (t, x, y) and a cross space, the z-axis in the vertical direction. We have derived a new set of equations for the long waves in shallow water in the propagation space. When the ratio of the amplitude of the disturbance to the depth of the water is small, these equations reduce to the equations derived by Whitham (1967) by the variational principle. Then we have derived a single equation in (t, x, y)-space which is a generalization of the fourth order Boussinesq equation for one-dimensional waves. In the neighbourhood of a wave froat, this equation reduces to the multidimensional generalization of the KdV equation derived by Shen & Keller (1973). We have also included a systematic discussion of the orders of the various non-dimensional parameters. This is followed by a presentation of a general theory of approximating a system of quasi-linear equations following one of the modes. When we apply this general method to the surface water wave equations in the propagation space, we get the Shen-Keller equation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Transient natural convection flow on a heated cylinder buried in a semi-infinite liquid-saturated porous medium has been studied. The unsteadiness in the problem arises due to the cylinder which is heated (cooled) suddenly and then maintained at that temperature. The coupled partial differential equations governing the flow and heat transfer are cast into stream function-temperature formulation, and the solutions are obtained from the initial time to the time when steady state is reached. The heat transfer is found to change significantly with increasing time in a small time interval immediately after the start of the impulsive change, and steady state is reached after some time. The average Nusselt number is found to increase with Rayleigh number When the surface of the cylinder is suddenly cooled, there is a change in the direction of the heat transfer in a small time interval immediately after the start of the impulsive change in the surface temperature;however when the surface temperature is suddenly increased, no such phenomenon is observed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper investigates numerically the heat transfer characteristics of confined slot jet impingement on a pin-fin heat sink. A variety of pin-fin heat sinks is investigated, and the resulting enhancement of heat transfer studied. The distribution of heat transfer coefficient on the top surface of the base plate and that along the fin height are examined. Both steady and pulsated jets are studied. It is observed that for a steady jet impingement on a pin-fin heat sink, the effective heat transfer coefficient increases with fin height, leading to a corresponding decrease in base plate temperature for the same heat flux. In the case of pulsated jets, the influence of pulse frequency and the Reynolds number is examined, and their effect on the effective heat transfer coefficient is studied.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Semiconductor Bloch equations, which microscopically describe the dynamics of a Coulomb interacting, spin-unpolarized electron-hole plasma, can be solved in two limits: the coherent and the quasiequilibrium regimes. These equations have been recently extended to include the spin degree of freedom and used to explain spin dynamics in the coherent regime. In the quasiequilibrium limit, one solves the Bethe-Salpeter equation in a two-band model to describe how optical absorption is affected by Coulomb interactions within a spin unpolarized plasma of arbitrary density. In this work, we modified the solution of the Bethe-Salpeter equation to include spin polarization and light holes in a three-band model, which allowed us to account for spin-polarized versions of many-body effects in absorption. The calculated absorption reproduced the spin-dependent, density-dependent, and spectral trends observed in bulk GaAs at room temperature, in a recent pump-probe experiment with circularly polarized light. Hence, our results may be useful in the microscopic modeling of density-dependent optical nonlinearities due to spin-polarized carriers in semiconductors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The flow generated by the rotation of a sphere in an infinitely extending fluid has recently been studied by Goldshtik. The corresponding problem for non-Newtonian Reiner-Rivlin fluids has been studied by Datta. Bhatnagar and Rajeswari have studied the secondary flow between two concentric spheres rotating about an axis in the non-Newtonian fluids. This last investigation was further generalised by Rajeswari to include the effects of small radial suction or injection. In Part A of the present investigation, we have studied the secondary flow generated by the slow rotation of a single sphere in non-Newtonian fluid obeying the Rivlin-Ericksen constitutive equation. In Part B, the effects of small suction or injection have been studied which is applied in an arbitrary direction at the surface of the sphere. In the absence of suction or injection, the secondary flow for small values of the visco-elastic parameter is similar to that of Newtonian fluids with inclusion of inertia terms in the Oseen approximation. If this parameter exceeds Kc = 18R/219, whereR is the Reynolds number, the breaking of the flow field takes place into two domains, in one of which the stream lines form closed loops. For still higher values of this parameter, the complete reversal of the sense of the flow takes place. When suction or injection is included, the breaking of the flow persists under certain condition investigated in this paper. When this condition is broken, the breaking of the flow is obliterated.