180 resultados para Gravity waves.
Resumo:
Using a perturbation technique, we derive Modified Korteweg—de Vries (MKdV) equations for a mixture of warm-ion fluid (γ i = 3) and hot and non-isothermal electrons (γ e> 1), (i) when deviations from isothermality are finite, and (ii) when deviations from isothermality are small. We obtain stationary solutions for these equations, and compare them with the corresponding solutions for a mixture of warm-ion fluid (γ i = 3) and hot, isothermal electrons (γ i = 1).
Resumo:
The paper deals with the classical problem of axi-symmetric transmission of low amplitude waves through a circular pipe containing a viscous liquid. Exact governing equations are identified and solved, the radial as well as the axial component of the velocity being considered. Attention is drawn to certain fallacies underlying the conventional approach. The parameters required in the formulation of the transfer matrix for a pipe have been evaluated. In order to evaluate the response at the terminal point of a branched system for a sinusoidal input at one of the ends, a general algorithm has been developed.
Resumo:
Using a singular perturbation analysis the nonplanar Burgers' equation is solved to yield the shock wave-displacement due to diffusion for spherical and cylindrical N waves, thus supplementing the earlier results of Lighthill for the plane N waves. Physics of Fluids is copyrighted by The American Institute of Physics.
Resumo:
Full dispersion curves including the effect of ions are presented for the electromagnetic surface waves propagating over a plasma-plasma interface in the direction perpendicular to the magnetic field which is parallel to the interface. The effect of ions and finite density ratio of the two media at the boundary give rise to various new features in the dispersion characteristics of these surface waves.
Resumo:
The paper presents a unified picture of the structure of steady one-dimensional shock waves in partially ionized argon in the absence of external electric and magnetic fields. The study is based on a two-temperature three-fluid continuum approach using the Navier-Stokes equations as a model and taking account of nonequilibrium ionization. The analysis of the governing equations is based on the method of matched asymptotic expansions and leads to three layers: (1) a broad thermal layer dominated by electron thermal conduction; (2) an atom-ion shock structured by heavy-particle collisional dissipative mechanisms; and (3) an ionization relaxation layer in which electron-atom inelastic collisions dominate.
Resumo:
Analogies between the properties of black holes (in the framework of strong gravity) and those of elementary particles are discussed especially in connection with recent works on black holes with gauge charges and blackhole thermodynamics.
Resumo:
Abstract is not available.
Resumo:
The theoretical analysis, based on the perturbation technique, of ion-acoustic waves in the vicinity of a Korteweg-de Vries (K-dV) equation derived in a plasma with some negative ions has been made. The investigation shows that the negative ions in plasma with isothermal electrons introduced a critical concentration at which the ion-acoustic wave plays an important role of wave-breaking and forming a precursor while the plasma with non-isothermal electrons has no such singular behaviour of the wave. These two distinct features of ion waves lead to an overall different approach of present study of ion-waves. A distinct feature of non-uniform transition from the nonisothermal case to isothermal case has been shown. Few particular plasma models have been chosen to show the characteristics behaviour of the ion-waves existing in different cases
Resumo:
Abstract is not available.
Resumo:
The surface water waves are "modal" waves in which the "physical space" (t, x, y, z) is the product of a propagation space (t, x, y) and a cross space, the z-axis in the vertical direction. We have derived a new set of equations for the long waves in shallow water in the propagation space. When the ratio of the amplitude of the disturbance to the depth of the water is small, these equations reduce to the equations derived by Whitham (1967) by the variational principle. Then we have derived a single equation in (t, x, y)-space which is a generalization of the fourth order Boussinesq equation for one-dimensional waves. In the neighbourhood of a wave froat, this equation reduces to the multidimensional generalization of the KdV equation derived by Shen & Keller (1973). We have also included a systematic discussion of the orders of the various non-dimensional parameters. This is followed by a presentation of a general theory of approximating a system of quasi-linear equations following one of the modes. When we apply this general method to the surface water wave equations in the propagation space, we get the Shen-Keller equation.
Resumo:
The solution for a line source of oscillatory strength kept at the origin in a wall bounding a semi-infinite viscous imcompressible stratified fluid is presented in an integral form. The behaviour of the flow at far field and near field is studied by an asymptotic expansion procedure. The streamlines for different parameters are drawn and discussed. The real characteristic straight lines present in the inviscid problem are modified by the viscosity and the solutions obtained are valid even at the resonance frequency.