67 resultados para Geometric Function Theory
Resumo:
Several time dependent fluorescence Stokes shift (TDFSS) experiments have reported a slow power law decay in the hydration dynamics of a DNA molecule. Such a power law has neither been observed in computer simulations nor in some other TDFSS experiments. Here we observe that a slow decay may originate from collective ion contribution because in experiments DNA is immersed in a buffer solution, and also from groove bound water and lastly from DNA dynamics itself. In this work we first express the solvation time correlation function in terms of dynamic structure factors of the solution. We use mode coupling theory to calculate analytically the time dependence of collective ionic contribution. A power law decay in seen to originate from an interplay between long-range probe-ion direct correlation function and ion-ion dynamic structure factor. Although the power law decay is reminiscent of Debye-Falkenhagen effect, yet solvation dynamics is dominated by ion atmosphere relaxation times at longer length scales (small wave number) than in electrolyte friction. We further discuss why this power law may not originate from water motions which have been computed by molecular dynamics simulations. Finally, we propose several experiments to check the prediction of the present theoretical work.
Resumo:
Cis-peptide embedded segments are rare in proteins but often highlight their important role in molecular function when they do occur. The high evolutionary conservation of these segments illustrates this observation almost universally, although no attempt has been made to systematically use this information for the purpose of function annotation. In the present study, we demonstrate how geometric clustering and level-specific Gene Ontology molecular-function terms (also known as annotations) can be used in a statistically significant manner to identify cis-embedded segments in a protein linked to its molecular function. The present study identifies novel cis-peptide fragments, which are subsequently used for fragment-based function annotation. Annotation recall benchmarks interpreted using the receiver-operator characteristic plot returned an area-under-curve >0.9, corroborating the utility of the annotation method. In addition, we identified cis-peptide fragments occurring in conjunction with functionally important trans-peptide fragments, providing additional insights into molecular function. We further illustrate the applicability of our method in function annotation where homology-based annotation transfer is not possible. The findings of the present study add to the repertoire of function annotation approaches and also facilitate engineering, design and allied studies around the cis-peptide neighborhood of proteins.
Resumo:
The isometric fluctuation relation (IFR) P. I. Hurtado et al., Proc. Natl. Acad. Sci. USA 108, 7704 (2011)] relates the relative probability of current fluctuations of fixed magnitude in different spatial directions. We test its validity in an experiment on a tapered rod, rendered motile by vertical vibration and immersed in a sea of spherical beads. We analyze the statistics of the velocity vector of the rod and show that they depart significantly from the IFR of Hurtado et al. Aided by a Langevin-equation model we show that our measurements are largely described by an anisotropic generalization of the IFR R. Villavicencio et al., Europhys. Lett. 105, 30009 (2014)], with no fitting parameters, but with a discrepancy in the prefactor whose origin may lie in the detailed statistics of the microscopic noise. The experimentally determined large-deviation function of the velocity vector has a kink on a curve in the plane.
Resumo:
We study the free fermion theory in 1+1 dimensions deformed by chemical potentials for holomorphic, conserved currents at finite temperature and on a spatial circle. For a spin-three chemical potential mu, the deformation is related at high temperatures to a higher spin black hole in hs0] theory on AdS(3) spacetime. We calculate the order mu(2) corrections to the single interval Renyi and entanglement entropies on the torus using the bosonized formulation. A consistent result, satisfying all checks, emerges upon carefully accounting for both perturbative and winding mode contributions in the bosonized language. The order mu(2) corrections involve integrals that are finite but potentially sensitive to contact term singularities. We propose and apply a prescription for defining such integrals which matches the Hamiltonian picture and passes several non-trivial checks for both thermal corrections and the Renyi entropies at this order. The thermal corrections are given by a weight six quasi-modular form, whilst the Renyi entropies are controlled by quasi-elliptic functions of the interval length with modular weight six. We also point out the well known connection between the perturbative expansion of the partition function in powers of the spin-three chemical potential and the Gross-Taylor genus expansion of large-N Yang-Mills theory on the torus. We note the absence of winding mode contributions in this connection, which suggests qualitatively different entanglement entropies for the two systems.
Resumo:
This paper presents the stability analysis of functionally graded plate integrated with piezoelectric actuator and sensor at the top and bottom face, subjected to electrical and mechanical loading. The finite element formulation is based on first order and higher order shear deformation theory, degenerated shell element, von-Karman hypothesis and piezoelectric effect. The equation for static analysis is derived by using the minimum energy principle and solutions for critical buckling load is obtained by solving eigenvalue problem. The material properties of the functionally graded plate are assumed to be graded along the thickness direction according to simple power law function. Two types of boundary conditions are used, such as SSSS (simply supported) and CSCS (simply supported along two opposite side perpendicular to the direction of compression and clamped along the other two sides). Sensor voltage is calculated using present analysis for various power law indices and FG (functionally graded) material gradations. The stability analysis of piezoelectric FG plate is carried out to present the effects of power law index, material variations, applied mechanical pressure and piezo effect on buckling and stability characteristics of FG plate.
Resumo:
Network theory has become an excellent method of choice through which biological data are smoothly integrated to gain insights into complex biological problems. Understanding protein structure, folding, and function has been an important problem, which is being extensively investigated by the network approach. Since the sequence uniquely determines the structure, this review focuses on the networks of non-covalently connected amino acid side chains in proteins. Questions in structural biology are addressed within the framework of such a formalism. While general applications are mentioned in this review, challenging problems which have demanded the attention of scientific community for a long time, such as allostery and protein folding, are considered in greater detail. Our aim has been to explore these important problems through the eyes of networks. Various methods of constructing protein structure networks (PSN) are consolidated. They include the methods based on geometry, edges weighted by different schemes, and also bipartite network of protein-nucleic acid complexes. A number of network metrics that elegantly capture the general features as well as specific features related to phenomena, such as allostery and protein model validation, are described. Additionally, an integration of network theory with ensembles of equilibrium structures of a single protein or that of a large number of structures from the data bank has been presented to perceive complex phenomena from network perspective. Finally, we discuss briefly the capabilities, limitations, and the scope for further explorations of protein structure networks.
Resumo:
A state-based peridynamic formulation for linear elastic shells is presented. The emphasis is on introducing, possibly for the first time, a general surface based peridynamic model to represent the deformation characteristics of structures that have one geometric dimension much smaller than the other two. A new notion of curved bonds is exploited to cater for force transfer between the peridynamic particles describing the shell. Starting with the three dimensional force and deformation states, appropriate surface based force, moment and several deformation states are arrived at. Upon application on the curved bonds, such states yield the necessary force and deformation vectors governing the motion of the shell. By incorporating a shear correction factor, the formulation also accommodates analysis of shells that have higher thickness. In order to attain this, a consistent second order approximation to the complementary energy density is considered and incorporated in peridynamics via constitutive correspondence. Unlike the uncoupled constitution for thin shells, a consequence of a first order approximation, constitutive relations for thick shells are fully coupled in that surface wryness influences the in-plane stress resultants and surface strain the moments. Our proposal on the peridynamic shell theory is numerically assessed against simulations on static deformation of spherical and cylindrical shells, that of flat plates and quasi-static fracture propagation in a cylindrical shell. (C) 2016 Elsevier Ltd. All rights reserved.