112 resultados para Geo-spatial datasets
Resumo:
Three-dimensional (3D) resolution improvement in multi-photon multiple-excitation-spot-optical microscopy is proposed. Specially designed spatial filter is employed for improving the overall 3D resolution of the imaging system. An improvement up to a factor of 14.5 and sub-femto liter volume excitation is achieved. The system shows substantial sidelobe reduction (<4%) due to the non-linear intensity dependence of multiphoton process. Polarization effect on x-oriented and freely rotating dipoles shows dramatic change in the field distribution at the focal-plane. The resulting point-spread function has the ability to produce several strongly localized polarization dependent field patterns which may find applications in optical engineering and bioimaging.
Resumo:
One of the long standing problems in quantum chemistry had been the inability to exploit full spatial and spin symmetry of an electronic Hamiltonian belonging to a non-Abelian point group. Here, we present a general technique which can utilize all the symmetries of an electronic (magnetic) Hamiltonian to obtain its full eigenvalue spectrum. This is a hybrid method based on Valence Bond basis and the basis of constant z-component of the total spin. This technique is applicable to systems with any point group symmetry and is easy to implement on a computer. We illustrate the power of the method by applying it to a model icosahedral half-filled electronic system. This model spans a huge Hilbert space (dimension 1,778,966) and in the largest non-Abelian point group. The C60 molecule has this symmetry and hence our calculation throw light on the higher energy excited states of the bucky ball. This method can also be utilized to study finite temperature properties of strongly correlated systems within an exact diagonalization approach. (C) 2011 Wiley Periodicals, Inc. Int J Quantum Chem, 2012
Resumo:
During summer, the northern Indian Ocean exhibits significant atmospheric intraseasonal variability associated with active and break phases of the monsoon in the 30-90 days band. In this paper, we investigate mechanisms of the Sea Surface Temperature (SST) signature of this atmospheric variability, using a combination of observational datasets and Ocean General Circulation Model sensitivity experiments. In addition to the previously-reported intraseasonal SST signature in the Bay of Bengal, observations show clear SST signals in the Arabian Sea related to the active/break cycle of the monsoon. As the atmospheric intraseasonal oscillation moves northward, SST variations appear first at the southern tip of India (day 0), then in the Somali upwelling region (day 10), northern Bay of Bengal (day 19) and finally in the Oman upwelling region (day 23). The Bay of Bengal and Oman signals are most clearly associated with the monsoon active/break index, whereas the relationship with signals near Somali upwelling and the southern tip of India is weaker. In agreement with previous studies, we find that heat flux variations drive most of the intraseasonal SST variability in the Bay of Bengal, both in our model (regression coefficient, 0.9, against similar to 0.25 for wind stress) and in observations (0.8 regression coefficient); similar to 60% of the heat flux variation is due do shortwave radiation and similar to 40% due to latent heat flux. On the other hand, both observations and model results indicate a prominent role of dynamical oceanic processes in the Arabian Sea. Wind-stress variations force about 70-100% of SST intraseasonal variations in the Arabian Sea, through modulation of oceanic processes (entrainment, mixing, Ekman pumping, lateral advection). Our similar to 100 km resolution model suggests that internal oceanic variability (i.e. eddies) contributes substantially to intraseasonal variability at small-scale in the Somali upwelling region, but does not contribute to large-scale intraseasonal SST variability due to its small spatial scale and random phase relation to the active-break monsoon cycle. The effect of oceanic eddies; however, remains to be explored at a higher spatial resolution.
Resumo:
Urbanisation is a dynamic complex phenomenon involving large scale changes in the land uses at local levels. Analyses of changes in land uses in urban environments provide a historical perspective of land use and give an opportunity to assess the spatial patterns, correlation, trends, rate and impacts of the change, which would help in better regional planning and good governance of the region. Main objective of this research is to quantify the urban dynamics using temporal remote sensing data with the help of well-established landscape metrics. Bangalore being one of the rapidly urbanising landscapes in India has been chosen for this investigation. Complex process of urban sprawl was modelled using spatio temporal analysis. Land use analyses show 584% growth in built-up area during the last four decades with the decline of vegetation by 66% and water bodies by 74%. Analyses of the temporal data reveals an increase in urban built up area of 342.83% (during 1973-1992), 129.56% (during 1992-1999), 106.7% (1999-2002), 114.51% (2002-2006) and 126.19% from 2006 to 2010. The Study area was divided into four zones and each zone is further divided into 17 concentric circles of 1 km incrementing radius to understand the patterns and extent of the urbanisation at local levels. The urban density gradient illustrates radial pattern of urbanisation for the period 1973-2010. Bangalore grew radially from 1973 to 2010 indicating that the urbanisation is intensifying from the central core and has reached the periphery of the Greater Bangalore. Shannon's entropy, alpha and beta population densities were computed to understand the level of urbanisation at local levels. Shannon's entropy values of recent time confirms dispersed haphazard urban growth in the city, particularly in the outskirts of the city. This also illustrates the extent of influence of drivers of urbanisation in various directions. Landscape metrics provided in depth knowledge about the sprawl. Principal component analysis helped in prioritizing the metrics for detailed analyses. The results clearly indicates that whole landscape is aggregating to a large patch in 2010 as compared to earlier years which was dominated by several small patches. The large scale conversion of small patches to large single patch can be seen from 2006 to 2010. In the year 2010 patches are maximally aggregated indicating that the city is becoming more compact and more urbanised in recent years. Bangalore was the most sought after destination for its climatic condition and the availability of various facilities (land availability, economy, political factors) compared to other cities. The growth into a single urban patch can be attributed to rapid urbanisation coupled with the industrialisation. Monitoring of growth through landscape metrics helps to maintain and manage the natural resources. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Monitoring and visualizing specimens at a large penetration depth is a challenge. At depths of hundreds of microns, several physical effects (such as, scattering, PSF distortion and noise) deteriorate the image quality and prohibit a detailed study of key biological phenomena. In this study, we use a Bessel-like beam in-conjugation with an orthogonal detection system to achieve depth imaging. A Bessel-like penetrating diffractionless beam is generated by engineering the back-aperture of the excitation objective. The proposed excitation scheme allows continuous scanning by simply translating the detection PSF. This type of imaging system is beneficial for obtaining depth information from any desired specimen layer, including nano-particle tracking in thick tissue. As demonstrated by imaging the fluorescent polymer-tagged-CaCO3 particles and yeast cells in a tissue-like gel-matrix, the system offers a penetration depth that extends up to 650 mu m. This achievement will advance the field of fluorescence imaging and deep nano-particle tracking.
Resumo:
This study uses precipitation estimates from the Tropical Rainfall Measuring Mission to quantify the spatial and temporal scales of northward propagation of convection over the Indian monsoon region during boreal summer. Propagating modes of convective systems in the intraseasonal time scales such as the Madden-Julian oscillation can interact with the intertropical convergence zone and bring active and break spells of the Indian summer monsoon. Wavelet analysis was used to quantify the spatial extent (scale) and center of these propagating convective bands, as well as the time period associated with different spatial scales. Results presented here suggest that during a good monsoon year the spatial scale of this oscillation is about 30 degrees centered around 10 degrees N. During weak monsoon years, the scale of propagation decreases and the center shifts farther south closer to the equator. A strong linear relationship is obtained between the center/scale of convective wave bands and intensity of monsoon precipitation over Indian land on the interannual time scale. Moreover, the spatial scale and its center during the break monsoon were found to be similar to an overall weak monsoon year. Based on this analysis, a new index is proposed to quantify the spatial scales associated with propagating convective bands. This automated wavelet-based technique developed here can be used to study meridional propagation of convection in a large volume of datasets from observations and model simulations. The information so obtained can be related to the interannual and intraseasonal variation of Indian monsoon precipitation.
Resumo:
In this study, the authors have investigated the likely future changes in the summer monsoon over the Western Ghats (WG) orographic region of India in response to global warming, using time-slice simulations of an ultra high-resolution global climate model and climate datasets of recent past. The model with approximately 20-km mesh horizontal resolution resolves orographic features on finer spatial scales leading to a quasi-realistic simulation of the spatial distribution of the present-day summer monsoon rainfall over India and trends in monsoon rainfall over the west coast of India. As a result, a higher degree of confidence appears to emerge in many aspects of the 20-km model simulation, and therefore, we can have better confidence in the validity of the model prediction of future changes in the climate over WG mountains. Our analysis suggests that the summer mean rainfall and the vertical velocities over the orographic regions of Western Ghats have significantly weakened during the recent past and the model simulates these features realistically in the present-day climate simulation. Under future climate scenario, by the end of the twenty-first century, the model projects reduced orographic precipitation over the narrow Western Ghats south of 16A degrees N that is found to be associated with drastic reduction in the southwesterly winds and moisture transport into the region, weakening of the summer mean meridional circulation and diminished vertical velocities. We show that this is due to larger upper tropospheric warming relative to the surface and lower levels, which decreases the lapse rate causing an increase in vertical moist static stability (which in turn inhibits vertical ascent) in response to global warming. Increased stability that weakens vertical velocities leads to reduction in large-scale precipitation which is found to be the major contributor to summer mean rainfall over WG orographic region. This is further corroborated by a significant decrease in the frequency of moderate-to-heavy rainfall days over WG which is a typical manifestation of the decrease in large-scale precipitation over this region. Thus, the drastic reduction of vertical ascent and weakening of circulation due to `upper tropospheric warming effect' predominates over the `moisture build-up effect' in reducing the rainfall over this narrow orographic region. This analysis illustrates that monsoon rainfall over mountainous regions is strongly controlled by processes and parameterized physics which need to be resolved with adequately high resolution for accurate assessment of local and regional-scale climate change.
Resumo:
Spatial modulation (SM) and space shift keying (SSK) are relatively new modulation techniques which are attractive in multi-antenna communications. Single carrier (SC) systems can avoid the peak-to-average power ratio (PAPR) problem encountered in multicarrier systems. In this paper, we study SM and SSK signaling in cyclic-prefixed SC (CPSC) systems on MIMO-ISI channels. We present a diversity analysis of MIMO-CPSC systems under SSK and SM signaling. Our analysis shows that the diversity order achieved by (n(t), n(r)) SSK scheme and (n(t), n(r), Theta(M)) SM scheme in MIMO-CPSC systems under maximum-likelihood (ML) detection is n(r), where n(t), n(r) denote the number of transmit and receive antennas and Theta(M) denotes the modulation alphabet of size M. Bit error rate (BER) simulation results validate this predicted diversity order. Simulation results also show that MIMO-CPSC with SM and SSK achieves much better performance than MIMO-OFDM with SM and SSK.
Resumo:
We study the question of determining locations of base stations (BSs) that may belong to the same or to competing service providers. We take into account the impact of these decisions on the behavior of intelligent mobile terminals that can connect to the base station that offers the best utility. The signal-to-interference-plus-noise ratio (SINR) is used as the quantity that determines the association. We first study the SINR association-game: We determine the cells corresponding to each base stations, i.e., the locations at which mobile terminals prefer to connect to a given base station than to others. We make some surprising observations: 1) displacing a base station a little in one direction may result in a displacement of the boundary of the corresponding cell to the opposite direction; 2) a cell corresponding to a BS may be the union of disconnected subcells. We then study the hierarchical equilibrium in the combined BS location and mobile association problem: We determine where to locate the BSs so as to maximize the revenues obtained at the induced SINR mobile association game. We consider the cases of single frequency band and two frequency bands of operation. Finally, we also consider hierarchical equilibria in two frequency systems with successive interference cancellation.
Resumo:
This paper discusses an approach for river mapping and flood evaluation based on multi-temporal time-series analysis of satellite images utilizing pixel spectral information for image clustering and region based segmentation for extracting water covered regions. MODIS satellite images are analyzed at two stages: before flood and during flood. Multi-temporal MODIS images are processed in two steps. In the first step, clustering algorithms such as Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) are used to distinguish the water regions from the non-water based on spectral information. These algorithms are chosen since they are quite efficient in solving multi-modal optimization problems. These classified images are then segmented using spatial features of the water region to extract the river. From the results obtained, we evaluate the performance of the methods and conclude that incorporating region based image segmentation along with clustering algorithms provides accurate and reliable approach for the extraction of water covered region.
Resumo:
In this paper, we propose modulation diversity techniques for Spatial Modulation (SM) system using Complex Interleaved Orthogonal Design (CIOD). Specifically, we show that the standard SM scheme can achieve a transmit diversity order of two by using the CIOD meant for two transmit antenna system without incurring any additional system complexity or bandwidth requirement. Furthermore, we propose a low-complexity maximum likelihood detector for our CIOD based SM schemes by exploiting the structure of the CIOD. We show with our simulation results that the proposed schemes offer transmit diversity order of two and give a better symbol error rate performance than the conventional SM scheme.
Resumo:
Novel transmit antenna selection techniques are conceived for Spatial Modulation (SM) systems and their symbol error rate (SER) performance is investigated. Specifically, low-complexity Euclidean Distance optimized Antenna Selection (EDAS) and Capacity Optimized Antenna Selection (COAS) are studied. It is observed that the COAS scheme gives a better SER performance than the EDAS scheme. We show that the proposed antenna selection based SM systems are capable of attaining a significant gain in signal-to-noise ratio (SNR) compared to conventional SM systems, and also outperform the conventional MIMO systems employing antenna selection at both low and medium SNRs.
Resumo:
This paper primarily intends to develop a GIS (geographical information system)-based data mining approach for optimally selecting the locations and determining installed capacities for setting up distributed biomass power generation systems in the context of decentralized energy planning for rural regions. The optimal locations within a cluster of villages are obtained by matching the installed capacity needed with the demand for power, minimizing the cost of transportation of biomass from dispersed sources to power generation system, and cost of distribution of electricity from the power generation system to demand centers or villages. The methodology was validated by using it for developing an optimal plan for implementing distributed biomass-based power systems for meeting the rural electricity needs of Tumkur district in India consisting of 2700 villages. The approach uses a k-medoid clustering algorithm to divide the total region into clusters of villages and locate biomass power generation systems at the medoids. The optimal value of k is determined iteratively by running the algorithm for the entire search space for different values of k along with demand-supply matching constraints. The optimal value of the k is chosen such that it minimizes the total cost of system installation, costs of transportation of biomass, and transmission and distribution. A smaller region, consisting of 293 villages was selected to study the sensitivity of the results to varying demand and supply parameters. The results of clustering are represented on a GIS map for the region.
Resumo:
Neutral and niche theories give contrasting explanations for the maintenance of tropical tree species diversity. Both have some empirical support, but methods to disentangle their effects have not yet been developed. We applied a statistical measure of spatial structure to data from 14 large tropical forest plots to test a prediction of niche theory that is incompatible with neutral theory: that species in heterogeneous environments should separate out in space according to their niche preferences. We chose plots across a range of topographic heterogeneity, and tested whether pairwise spatial associations among species were more variable in more heterogeneous sites. We found strong support for this prediction, based on a strong positive relationship between variance in the spatial structure of species pairs and topographic heterogeneity across sites. We interpret this pattern as evidence of pervasive niche differentiation, which increases in importance with increasing environmental heterogeneity.