224 resultados para GERMANIUM OXIDES
Resumo:
The role of cobalt centers in promoting the recombination and trapping processes in n-type germanium has been investigated. Data on lifetime measurements carried out by the steadystate photoconductivity and photo-magneto-electric methods in the temperature range 145 to 300°K on n-type germanium samples containing cobalt in the concentration range 1·1013 to 5.·014/cm3 are presented. The results are analysed on the basis of Sah-Shockley's multi-level formula to yield the capture cross-sections Sp= (hole capture cross-section at doubly negatively charged center) and Sn-(electron capture cross-section at singly negatively charged center) and temperature dependence. It is found that Sp= is (22 ± 6). 10-16 cm2 and Sn- is ∼ 0·1. 10-16 cm2 at 145°K. Sp= varies (n = 3·5 to 4·5) in the range 145-220°K; above 225°K the index 'n' tends to a smaller value. Sn- is practically temperature independent below 180°K and increases with increase of temperature above 180°K. The value of Sp= and its temperature variation lead one to the conclusion that during capture at attractive centers, the phonon cascade mechanism is responsible for the dissipation of the recombination energy.
Resumo:
The recombination properties of cobalt centers in p-type germanium containing cobalt in the concentration range 1014 to 1016 atoms/cm3 have been investigated. The measurement of lifetime has been carried out by steady-state photoconductivity and photo-magneto-electric methods in the temperature range 145 to 300°K. The cross-sections Sno (electron capture cross-section at neutral centers). Sn- (electron capture cross-section at singly negatively charged centers) and their temperature variations have been estimated by the analysis of the lifetime data on the basis of Sah-Shockley's multi-level formula. The value of Sno is (15±5).10-16 cm2 and is temperature independent. The value of Sn- is ≈4·10-16 cm2 around 225°K and it increases with increase of temperature. The possible mechanisms for capture at neutral and repulsive centers are discussed and a summary of the capture cross-sections for cobalt centers is given. A comparison of the cross-section values of cobalt and their temperature variations with those of the related impurities-manganese, iron and nickel-in germanium has been made.
Resumo:
An expression derived for the free energy of mixing of a divalent basic oxide (MO) with SiO2 based on a model of silicate structure, takes into account the distribution of O2- (from MO) into the silica network, the mixing of silicate ions with O2- and the enthalpy of mixing. The resulting expression is ΔGmix=RT{N11n (2N1-N)2/4N1(1-N)+N21n N 2-N/1-N}, where N={(β+N1)-√(β+N 1)2-8βN1N2}/2β β=characteristic constant for the system N1=mol fraction of silica N2=mol fraction of MO. For the proper choice of β, calculated values of the activity of MO for the system PbO-SiO2, MnO-SiO2, FeO-SiO2 and CaO-SiO2 are in good agreement with experiment. The model predicts that the activity of the basic oxide decreases with increase in temperature.
Resumo:
We describe an investigation of the structure and dielectric properties of MM'O-4 and MTiM'O-6 rutile-type oxides for M = Cr, Fe, Ga and M' = Nb. Ta and Sb. All the oxides adopt a disordered rutile structure (P4(2)/mnm) at ambient temperature. A partial ordered trirutile-type structure is confirmed for FeTaO4 from the low temperature (17 K) neutron diffraction studies While both the MM'O-4 oxides (CrTaO4 and FeTaO4) investigated show a normal dielectric property MTiM'O-6 oxides for M = Fe, Cr and M' = Nb/Ta/Sb display a distinct relaxor/relaxor-like response. Significantly the corresponding gallium analogs, GaTiNbO6 and GaTiTaO6, do not show a relaxor response at T<500K (C) 2010 Elsevier Inc All rights reserved
Resumo:
Core-level spectroscopic studies suggest that cuprates nominally supposed to contain Cu3+ions are likely to have the excess positive charge on oxygen instead, giving rise to O-type species (oxygen holes)
Resumo:
Many transition metal oxide materials of high chemical purity are not necessarily monophasic. Thus, single crystals of chemically pure rare earth manganites and cobaltates of the general formula Ln1-xAxMO3 (Ln=rare earth metal, A=alkaline earth metal, M=Mn, Co) exhibit the phenomenon of electronic phase separation wherein phases of different electronic and magnetic properties coexist. Such phase separation, the length scale of which can vary anywhere between a few nanometers to microns, gives distinct signatures in X-ray and neutron diffraction patterns, electrical and magnetic properties, as well as in NMR and other spectroscopies. While the probe one employs to investigate electronic phase separation depends on the length scale, it is noteworthy that direct imaging of the inhomogeneities has been accomplished. Some understanding of this phenomenon has been possible on the basis of some of the theoretical models, but we are far from unraveling the varied aspects of this new phenomenon. Herein, we present the highlights of experimental techniques and theoretical approaches, and comment on the future outlook for this fascinating phenomenon
Resumo:
Germanium nanowires were grown on Au coated Si substrates at 380 degrees C in a high vacuum (5 x 10(-5) Torr) by e-beam evaporation of Germanium (Ge). The morphology observation by a field emission scanning electron microscope (FESEM) shows that the grown nanowires are randomly oriented with an average length and diameter of 600 nm and 120 nm respectively for a deposition time of 60 min. The nanowire growth ratewas measured to be similar to 10 nm/min. Transmission electron microscope (TEM) studies revealed that the Ge nanowires were single crystalline in nature and further energy dispersive X-ray analysis(EDAX) has shown that the tip of the grown nanowires was capped with Au nanoparticles, this shows that the growth of the Ge nanowires occurs by the vapour liquid solid (VLS) mechanism. HRTEM studies on the grown Ge nanowire show that they are single crystalline in nature and the growth direction was identified to be along [110]. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Si and Ge were cleaved on the (111) plane under ultra high vacuum and exposed to O and subsequent heat treatment. LEED and spot photometric measurements were taken. Cleaved surfaces for both Si and Ge gave the expected (2 x 1) structure. Results for O exposure were qualitatively for Si and Ge. The 1/2 orders disappeared after exposure to approx = 10 exp - exp 7. Integral orders started to weaken at 10 exp -6 to 10 exp - exp 2 torr min., disappearing at 10 exp -1 torr min. Heat treatment of Si at 900 deg C for several seconds restored the integral orders and further heating gave a new pattern with 1/3 orders. Exposure to 2 x 10 exp -6 torr min O without further heating weakened the fractional orders and at 10 exp -5 torr min they disappeared. Integral orders remained after further heating in O. For Ge integral orders were not restored after 0 exposure until heat treatment had continued at 550 deg C for several min. The (1 x 1) structure disappeared after heating at 590 deg C in 7 x 10 exp -1 torr O and further heating at 590 deg C without O restored the integral order Variations of intensity with voltage were measured for the (00) and (20) spots. The results supported a model proposed by Haneman (Phys. Rev., 1968, 170, 705) involving two kinds of atom sites on the cleaved surface. 20 ref.--E.J.S.
Resumo:
Core-level spectroscopic studies show the presence of holes on oxygen in LaNiO3 and LiNiO2 Nickel in these oxides seems to be essentially in the 2+ state instead of the 3+ state-where it would formally be expected to be on the basis of the stoichiometry.
Resumo:
Chlorine has been substituted at the 2- and 4-positions in the pyridine and quinoline rings of the corresponding N-oxides and 35Cl n.q.r. spectra have been studied in the temperature range 77–300 K. The change in the n.q.r. frequencies in N-oxides as compared to their parent compounds are interpreted in terms of the conjugative effect and the inductive effect of the N+—O– group. The negative temperature coefficients of the resonance frequencies in chloropyridine-N-oxides have been analysed using the Bayer, Kushida and Brown equations. The calculated torsional frequencies, which are in the range 52–78 cm–1, are found to be only slightly temperature dependent.
Resumo:
Likely presence of superconductivity in layered nickelates of K2NiF4 structure is pointed out.
Resumo:
Oxides of the formula La3LnBaCu5O13+δ (Ln = Nd, Sm, Gd, Dy, or Y) exhibiting metallic resistivity have been prepared and characterized. In the case of yttrium, a composition close to La2Y2BaCu5O13+δ, which is also metallic, could be prepared.