79 resultados para Foam Jet


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present study, a novel air-assisted impinging jet atomization is demonstrated. A configuration in which a gas jet is directed on to the impinging point of two liquid jets is used to improve the atomization. The effect of liquid properties such as viscosity and surface tension, angle between liquid jets and gas injection orifice diameter on spray characteristics has been experimentally studied. Backlit imaging and particle/droplet imaging and analysis techniques are utilized to characterize the sprays. The experimental results indicate that the effect of liquid viscosity is significant on the liquid sheet break up formed by the impinging jets. However, surface tension does not affect the spray structure significantly in this mode of atomization. At low liquid jet velocity, the prompt mode of atomization is observed where as atomization occurs in classical mode at higher liquid jet velocity. Results showed that variation in the angle between liquid jets do not affect the breakup phenomenon significantly. The spray angle is computed by finding the angle between the lines joining the impinging point and spray edge at an axial distance of 15 mm downstream of the impinging point from the ensemble-averaged data over 100 spray images. It was observed that effect of liquid jets impinging angle on the spray angle is higher at higher liquid velocity. Higher viscosity liquids exhibit lower spray angles. Droplet size measurements indicate a radial variation in the spray. An overall Sauter Mean Diameter (SMD) value is obtained by combining the droplet statistics at all radial locations at a fixed axial location. A very interesting trend is that the SMD is constant beyond a critical Gas to Liquid Ratio (GLR) and momentum ratio for a large variation in liquid viscosity and surface tension. This observation has important ramifications for fuel flexible systems. (C) 2013 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Heat and mass transfer studies in a calandria based reactor is quite complex both due to geometry and due to the complex mixing flow. It is challenging to devise optimum operating conditions with efficient but safe working range for such a complex configuration. Numerical study known to be very effective is taken up for investigation. In the present study a 3D RANS code with turbulence model has been used to compute the flow fields and to get the heat transfer characteristics to understand certain design parameters of engineering importance. The angle of injection and of the coolant liquid has a large effect on the heat transfer within the reactor.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper reports first observations of transition in recirculation pattern from an open-bubble type axisymmetric vortex breakdown to partially open bubble mode through an intermediate, critical regime of conical sheet formation in an unconfined, co-axial isothermal swirling flow. This time-mean transition is studied for two distinct flow modes which are characterized based on the modified Rossby number (Ro(m)), i.e., Ro(m) <= 1 and Ro(m) > 1. Flow modes with Ro(m) <= 1 are observed to first undergo cone-type breakdown and then to partially open bubble state as the geometric swirl number (S-G) is increased by similar to 20% and similar to 40%, respectively, from the baseline open-bubble state. However, the flow modes with Ro(m) > 1 fail to undergo such sequential transition. This distinct behavior is explained based on the physical significance associated with Ro(m) and the swirl momentum factor (xi). In essence, xi represents the ratio of angular momentum distributed across the flow structure to that distributed from central axis to the edge of the vortex core. It is observed that xi increases by similar to 100% in the critical swirl number band where conical breakdown occurs as compared to its magnitude in the S-G regime where open bubble state is seen. This results from the fact that flow modes with Ro(m) <= 1 are dominated by radial pressure gradient due to swirl/rotational effect when compared to radial pressure deficit arising from entrainment (due to the presence of co-stream). Consequently, the imparted swirl tends to penetrate easily towards the central axis causing it to spread laterally and finally undergo conical sheet breakdown. However, the flow modes with Ro(m) > 1 are dominated by pressure deficit due to entrainment effect. This blocks the radial inward penetration of imparted angular momentum thus preventing the lateral spread of these flow modes. As such these structures fail to undergo cone mode of vortex breakdown which is substantiated by a mere 30%-40% rise in xi in the critical swirl number range. (C) 2014 AIP Publishing LLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study reports the constitutive response and energy absorption capabilities of fluid-impregnated carbon nanotube (CNT) foams under compressive loading as a function of fluid viscosity and loading rates. At all strain rates tested, we observe two characteristic regimes: below a critical value, increasing fluid viscosity increases the load bearing and energy absorption capacities; after a critical value of the fluid's viscosity, we observe a rapid decrease in the systems' mechanical performance. For a given fluid viscosity, the load bearing capacity of the structure slightly decreases with strain rate. A phenomenological model, accounting for fluid-CNT interaction, is developed to explain the observed mechanical behavior. (C) 2014 AIP Publishing LLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Compressive loading of the carbon nanotube (CNT) has attracted much attention due to its entangled cellular like structure (CNT foam). This report investigates the mechanical behavior of magnetorheological fluid impregnated micro porous CNT foam that has not been realized before at this scale. Compressive behavior of CNT foam is found to greatly depend on the variation in both fluid viscosity as well as magnetic field intensity. Moreover, maximum achieved stress and energy absorption in CNT foam followed a power law behavior with the magnetic field intensity. Magnetic field induced movement of both CNT and iron oxide particles along the field direction is shown to dominate compressive behavior of CNT foam over highly attractive van der Waals forces between individual CNT. Therefore, this study demonstrates a method for tailoring the mechanical behavior of the fluid impregnated CNT foam. (C) 2014 AIP Publishing LLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Low-density nanostructured foams are often limited in applications due to their low mechanical and thermal stabilities. Here we report an approach of building the structural units of three-dimensional (3D) foams using hybrid two-dimensional (2D) atomic layers made of stacked graphene oxide layers reinforced with conformal hexagonal boron nitride (h-BN) platelets. The ultra-low density (1/400 times density of graphite) 3D porous structures are scalably synthesized using solution processing method. A layered 3D foam structure forms due to presence of h-BN and significant improvements in the mechanical properties are observed for the hybrid foam structures, over a range of temperatures, compared with pristine graphene oxide or reduced graphene oxide foams. It is found that domains of h-BN layers on the graphene oxide framework help to reinforce the 2D structural units, providing the observed improvement in mechanical integrity of the 3D foam structure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thrust-generating flapping foils are known to produce jets inclined to the free stream at high Strouhal numbers St = fA/U-infinity, where f is the frequency and A is the amplitude of flapping and U-infinity is the free-stream velocity. Our experiments, in the limiting case of St —> infinity (zero free-stream speed), show that a purely oscillatory pitching motion of a chordwise flexible foil produces a coherent jet composed of a reverse Benard-Karman vortex street along the centreline, albeit over a specific range of effective flap stiffnesses. We obtain flexibility by attaching a thin flap to the trailing edge of a rigid NACA0015 foil; length of flap is 0.79 c where c is rigid foil chord length. It is the time-varying deflections of the flexible flap that suppress the meandering found in the jets produced by a pitching rigid foil for zero free-stream condition. Recent experiments (Marais et al., J. Fluid Mech., vol. 710, 2012, p. 659) have also shown that the flexibility increases the St at which non-deflected jets are obtained. Analysing the near-wake vortex dynamics from flow visualization and particle image velocimetry (PIV) measurements, we identify the mechanisms by which flexibility suppresses jet deflection and meandering. A convenient characterization of flap deformation, caused by fluid-flap interaction, is through a non-dimensional effective stiffness', EI* = 8 EI/(rho V-TEmax(2) s(f) c(f)(3)/2), representing the inverse of the flap deflection due to the fluid-dynamic loading; here, EI is the bending stiffness of flap, rho is fluid density, V-TEmax is the maximum velocity of rigid foil trailing edge, s(f) is span and c(f) is chord length of the flexible flap. By varying the amplitude and frequency of pitching, we obtain a variation in EI* over nearly two orders of magnitude and show that only moderate EI*. (0.1 less than or similar to EI * less than or similar to 1 generates a sustained, coherent, orderly jet. Relatively `stiff' flaps (EI* greater than or similar to 1), including the extreme case of no flap, produce meandering jets, whereas highly `flexible' flaps (EI* less than or similar to 0.1) produce spread-out jets. Obtained from the measured mean velocity fields, we present values of thrust coefficients for the cases for which orderly jets are observed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The compressive behavior of graphene foam (GF) and its polymer (polydimethyl siloxane) (PDMS) infiltrated structure are presented. While GF showed an irreversible compressibility, the GF/PDMS structure revealed a highly reversible mechanical behavior up to many cycles of compression and also possesses a six times higher compressive strength. In addition, the strain rate demonstrated a negligible effect on both the maximum achieved stress and energy absorption in the GF/PDMS structure. The mechanical responses of both GF and GF/PDMS structure are compared with carbon nanotubes based cellular structure and its composite with PDMS, where GF/PDMS presented a dominant mechanical characteristic among other carbon based micro foam structures. Therefore, the improved mechanical properties of GF/PDMS suggest its potential for dampers, cushions, packaging, etc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For a domain Omega in C and an operator T in B-n(Omega), Cowen and Douglas construct a Hermitian holomorphic vector bundle E-T over Omega corresponding to T. The Hermitian holomorphic vector bundle E-T is obtained as a pull-back of the tautological bundle S(n, H) defined over by Gr(n, H) a nondegenerate holomorphic map z bar right arrow ker(T - z), z is an element of Omega. To find the answer to the converse, Cowen and Douglas studied the jet bundle in their foundational paper. The computations in this paper for the curvature of the jet bundle are rather intricate. They have given a set of invariants to determine if two rank n Hermitian holomorphic vector bundle are equivalent. These invariants are complicated and not easy to compute. It is natural to expect that the equivalence of Hermitian holomorphic jet bundles should be easier to characterize. In fact, in the case of the Hermitian holomorphic jet bundle J(k)(L-f), we have shown that the curvature of the line bundle L-f completely determines the class of J(k)(L-f). In case of rank Hermitian holomorphic vector bundle E-f, We have calculated the curvature of jet bundle J(k)(E-f) and also obtained a trace formula for jet bundle J(k)(E-f).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Atomization is the process of disintegration of a liquid jet into ligaments and subsequently into smaller droplets. A liquid jet injected from a circular orifice into cross flow of air undergoes atomization primarily due to the interaction of the two phases rather than an intrinsic break up. Direct numerical simulation of this process resolving the finest droplets is computationally very expensive and impractical. In the present study, we resort to multiscale modelling to reduce the computational cost. The primary break up of the liquid jet is simulated using Gerris, an open source code, which employs Volume-of-Fluid (VOF) algorithm. The smallest droplets formed during primary atomization are modeled as Lagrangian particles. This one-way coupling approach is validated with the help of the simple test case of tracking a particle in a Taylor-Green vortex. The temporal evolution of the liquid jet forming the spray is captured and the flattening of the cylindrical liquid column prior to breakup is observed. The size distribution of the resultant droplets is presented at different distances downstream from the location of injection and their spatial evolution is analyzed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present experimental work is concerned with the study of amplitude dependent acoustic response of an isothermal coaxial swirling jet. The excitation amplitude is increased in five distinct steps at the burner's Helmholtz resonator mode (i.e., 100 Hz). Two flow states are compared, namely, sub-critical and super-critical vortex breakdown (VB) that occur before and after the critical conical sheet breakdown, respectively. The geometric swirl number is varied in the range 2.14-4.03. Under the influence of external pulsing, global response characteristics are studied based on the topological changes observed in time-averaged 2D flow field. These are obtained from high resolution 2D PIV (particle image velocimetry) in the longitudinal-mid plane. PIV results also illustrate the changes in the normalized vortex core coordinates (r(vcc)/(r(vcc))(0) (Hz), y(vcc)/(y(vcc))(0) (Hz)) of internal recirculation zone (IRZ). A strong forced response is observed at 100 Hz (excitation frequency) in the convectively unstable region which get amplified based on the magnitude of external forcing. The radial extent of this forced response region at a given excitation amplitude is represented by the acoustic response region (b). The topological placement of the responsive convectively unstable region is a function of both the intensity of imparted swirl (characterized by swirl number) and forcing amplitude. It is observed that for sub-critical VB mode, an increase in the excitation amplitude till a critical value shifts the vortex core centre (particularly, the vortex core moves downstream and radially outwards) leading to drastic fanning-out/widening of the IRZ. This is accompanied by similar to 30% reduction in the recirculation velocity of the IRZ. It is also observed that b < R (R: radial distance from central axis to outer shear layer-OSL). At super-critical amplitudes, the sub-critical IRZ topology transits back (the vortex core retracts upstream and radially inwards) and finally undergoes a transverse shrinkage ((r(vcc))/(r(vcc))(0 Hz) decreases by similar to 20%) when b >= R. In contrast, the vortex core of super-critical breakdown mode consistently spreads radially outwards and is displaced further downstream. Finally, the IRZ fans-out at the threshold excitation amplitude. However, the acoustic response region b is still less than R. This is explained based on the characteristic geometric swirl number (S-G) of the flow regimes. The super-critical flow mode with higher S-G (hence, higher radial pressure drop due to rotational effect which scales as Delta P similar to rho u theta(2) and acts inwards towards the center line) compared to sub-critical state imposes a greater resistance to the radial outward spread of b. As a result, the acoustic energy supplied to the super-critical flow mode increases the degree of acoustic response at the pulsing frequency and energizes its harmonics (evident from power spectra). As a disturbance amplifier, the stronger convective instability mode within the flow structure of super-critical VB causes the topology to widen/fan-out severely at threshold excitation amplitude. (C) 2015 AIP Publishing LLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We analyse the hVV (V = W, Z) vertex in a model independent way using Vh production. To that end, we consider possible corrections to the Standard Model Higgs Lagrangian, in the form of higher dimensional operators which parametrise the effects of new physics. In our analysis, we pay special attention to linear observables that can be used to probe CP violation in the same. By considering the associated production of a Higgs boson with a vector boson (W or Z), we use jet substructure methods to define angular observables which are sensitive to new physics effects, including an asymmetry which is linearly sensitive to the presence of CP odd effects. We demonstrate how to use these observables to place bounds on the presence of higher dimensional operators, and quantify these statements using a log likelihood analysis. Our approach allows one to probe separately the hZZ and hWW vertices, involving arbitrary combinations of BSM operators, at the Large Hadron Collider.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We show that in studies of light quark- and gluon-initiated jet discrimination, it is important to include the information on softer reconstructed jets (associated jets) around a primary hard jet. This is particularly relevant while adopting a small radius parameter for reconstructing hadronic jets. The probability of having an associated jet as a function of the primary jet transverse momentum (PT) and radius, the minimum associated jet pi, and the association radius is computed up to next-to-double logarithmic accuracy (NDLA), and the predictions are compared with results from Herwig++, Pythia6 and Pythia8 Monte Carlos (MC). We demonstrate the improvement in quark-gluon discrimination on using the associated jet rate variable with the help of a multivariate analysis. The associated jet rates are found to be only mildly sensitive to the choice of parton shower and hadronization algorithms, as well as to the effects of initial state radiation and underlying event. In addition, the number of k(t) subjets of an anti-k(t) jet is found to be an observable that leads to a rather uniform prediction across different MC's, broadly being in agreement with predictions in NDLA, as compared to the often used number of charged tracks observable.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Growth of highly dense ZnO nanowires (ZnO NWs) is demonstrated on three-dimensional graphene foam (GF) using resistive thermal evaporation technique. Photoresponse of the as-grown hybrid structure of ZnO NWs on GF (ZnO NWs/GF) is evaluated for ultraviolet (UV) detection. Excellent photoresponse with fast response and recovery times of 9.5 and 38 s with external quantum efficiency of 2490.8% is demonstrated at low illumination power density of 1.3 mW/cm(2). In addition, due to excellent charge carrier transport, mobility of graphene reduces the recombination rate of photogenerated charge carriers, hence the lifetime of photogenerated free charge carriers enhances in the photodetectors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The compressive behavior of carbon nanotube (CNT) foam with an entangled microstructure has become an important research area due to its excellent energy absorption capability. This report presents a tailored mechanical behavior of CNT foam under an applied magnetic field when all CNTs in the foam are coated with magnetic nanoparticles. The presence of nanoparticles not only enhanced the stiffness of the foam to four times but also revealed a nonlinear variation in both the stress and energy absorption capability with the gradual increase of the magnetic field. Magnetization of both CNT and attached nanoparticles along the magnetic field direction are shown to play a crucial role in determining the dominant deformation mechanism.