124 resultados para Flame throwers


Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An electric field (100 V/cm at 230°C and 150°C) has been applied to ammonium perchlorate (AP)/polystyrene (PS) propellant mixtures in order to understand the low temperature decomposition behavior of the propellant. The charge-carrying species is anionic in nature at 230°C, which could be ClO4−, but is cationic at 150°C, which could be either NH4+ or H+. These results are parallel to that observed for pure ammonium perchlorate (AP) pellets [1]. The burning rate (Image ) of the propellant was found to follow the same trend as that for the thermal decomposition of the propellant on application of an electric field. At 150°C Image was higher at the −ve electrode than at the +ve electrode, but at 230°C just the opposite was observed. Kinetic studies have confirmed that the decomposition of the orthorhombic AP follows two mechanism corresponding to E = 30 kcal mol−1 (180–230°C) and E = 15 kcal mol−1 (150–180°C).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A simple yet fairly accurate method of calculating the ideal detonation velocity of an organic explosive from a knowledge of the chemical composition alone is proposed. The method is based on the concept that the energetics of a stoichiometrically balanced fuel-oxidizer system is a function of the total oxidizing or reducing valences of the composition. A combination of the valences in the form of Image , where R and P are, respectively, the reducing and oxidizing valences and MW is the molecular weight, has been found to be linearly related to the detonation velocity of the expolosive. The predicting capacity of the method has been found to be superior to other methods in the literature.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thermal decomposition and combustion of lithium perchlorate ammine:ammonium perchlorate (LPA:AP) and magnesium perchlorate ammine:ammonium perchlorate (MPA:AP) pellets have been studied using DTA, TG, and strand burner techniques. The DTA results of the ammine:AP pellets show that the addition of ammines lowers the ignition temperature of AP. However, isothermal TG of the ammine:AP pellets show that in the case of LPA:AP pellets the extent of decomposition increases with the increase in the concentration of LPA; whereas in the case of MPA:AP pellets the extent of decomposition decreases with the increase in the concentration of MPA. Similarly, LPA:AP pellets show higher burning rates compared to AP pellets. On the other hand, MPA:AP pellets show lower burning rates compared to AP pellets. Increasing the concentration of MPA in MPA:AP pellets completely suppresses the combustion. These results are explained on the basis of the thermal characteristics of the additives and their decomposition products.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A simple method of calculating the elemental stoichiometric coefficient, φe has been developed, which can easily be applied to multicomponent fuel-oxidizer compositions. The method correctly predicts whether a mixture is fuel lean, fuel rich, or stoichiometrically balanced. The total composition of oxidizing (or reducing) elements of the mixture appears to be related to the thermochemistry of the system. For the reaction of ammonium perchlorate and an organic fuel the heat of reaction varies linearly with the total composition of oxidizing elements. The physical significance of such a correlation based on thermochemical reasoning is highlighted in the paper.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The simple quasi-steady analysis of the combustion of a liquid fuel droplet in an oxidising atmosphere provides unsatisfactory explanations for several experimental observations. It's prediction of values for the burning constant (K), the flame-to-droplet diameter ratio ( ) and the flame temperature (Tf) have been found to be amgibuous if not completely inaccurate. A critical survey of the literature has led us to a detailed examination of the effects of unsteadiness and variable properties. The work published to date indicates that the gas-phase unsteadiness is relatively short and therefore quite insignificant.A new theoretical analysis based on heat transfer within the droplet is presented here. It shows that the condensed-phase unsteadiness lasts for about 20â??25% of the total burning time. It is concluded that the discrepancies between experimental observations and the predictions of the constant-property quasi-steady analysis cannot be attributed either to gas-phase or condensed-phase unsteadiness.An analytical model of quasi-steady droplet combustion with variable thermodynamic and transport properties and non-unity Lewis numbers will be examined. Further findings reveal a significant improvement in the prediction of combustion parameters, particularly of K, when consideration is given to variations of cp and λ with the temperature and concentrations of several species. Tf is accurately predicted when the required conditions of incomplete combustion or low ( ) at the flame are met. Further refinement through realistic Lewis numbers predicts ( ) meaningfully.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Abstract is not available.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Abstract is not available.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mass histories of polystyrene spheres (initial diameter 2–5 mm) burning in simulated air have been obtained by quenching combustion after variable times and weighing the residues. The flame positions and temperature histories of the spheres have also been recorded. A simple analytical model — an extension of quasi-steady combustion theory of liquid droplets — is shown to describe the combustion process reasonably well. Though the combustion process is broadly similar to that of liquid spheres, flame diameter is relatively smaller, particle temperature higher, and decomposition reactions occur in the condensed phase.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The preparation and thermal decomposition of lithium and magnesium perchlorate ammines have been investigated. The catalytic effect of these ammines on AP decomposition has been studied. The catalytic effect of lithium and magnesium salts on AP decomposition has been attributed to the formation of the metal perchlorate ammine intermediate. In the case of a magnesium salt: AP mixture, the melting of the magnesium perchlorate monoammine intermediate seems to play an important role in catalysing the decomposition.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, a new strategy for scaling burners based on "mild combustion" is evolved and adopted to scaling a burner from 3 to a 150 kW burner at a high heat release Late of 5 MW/m(3) Existing scaling methods (constant velocity, constant residence time, and Cole's procedure [Proc. Combust. Inst. 28 (2000) 1297]) are found to be inadequate for mild combustion burners. Constant velocity approach leads to reduced heat release rates at large sizes and constant residence time approach in unacceptable levels of pressure drop across the system. To achieve mild combustion at high heat release rates at all scales, a modified approach with high recirculation is adopted in the present studies. Major geometrical dimensions are scaled as D similar to Q(1/3) with an air injection velocity of similar to 100 m/s (Delta p similar to 600 mm water gauge). Using CFD support, the position of air injection holes is selected to enhance the recirculation rates. The precise role of secondary air is to increase the recirculation rates and burn LIP the residual CO in the downstream. Measurements of temperature and oxidizer concentrations inside 3 kW, 150 kW burner and a jet flame are used to distinguish the combustion process in these burners. The burner can be used for a wide range of fuels from LPG to producer gas as extremes. Up to 8 dB of noise level reduction is observed in comparison to the conventional combustion mode. Exhaust NO emissions below 26 and 3 ppm and temperatures 1710 and 1520 K were measured for LPG and producer gas when the burner is operated at stoichiometry. (c) 2004 The Combustion Institute. Published by Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper the problem of ignition and extinction has been formulated for the flow of a compressible fluid with Prandtl and Schmidt numbers taken as unity. In particular, the problems of (i) a jet impinging on a wall of combustible material and (ii) the opposed jet diffusion flame have been studied. In the wall jet case, three approximations in the momentum equation namely, (i) potential flow, (ii) viscous flow, (ii) viscous incompressible with k = 1 and (iii) Lees' approximation (taking pressure gradient terms zero) are studied. It is shown that the predictions of the mass flow rates at extinction are not very sensitive to the approximations made in the momentum equation. The effects of varying the wall temperature in the case (i) and the jet temperature in the case (ii) on the extinction speeds have been studied. The effects of varying the activation energy and the free stream oxidant concentration in case (ii), have also been investigated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A knowledge of the concentration distribution around a burning droplet is essential if accurate estimates are to be made of the transport coefficients in that region which influence the burning rate. There are two aspects of this paper; (1) determination of the concentration profiles, using the simple assumption of constant binary diffusion coefficients for all species, and comparison with experiments; and (2) postulation of a new relation for the therinal conductivity, which takes into account the variations of both temperature and concentrations of various species. First, the theoretical concentration profiles are evaluated and compared with experimental results reported elsewhere [5]. It is found that the agreement between the theory and experiment is fairly satisfactory. Then, by the use of these profiles and the relations proposed in the literature for the thermal conductivity of a mixture of nonpolar gases, a new relation for thermal conductivity: K = (A1 + B1 T) + (A2 + B2 T) xr (21). is suggested for analytical solutions of droplet combustion problems. Equations are presented to evaluate A1, A2, B1, and B2, and values of these terms for a few hydrocarbons are tabulated.

Relevância:

10.00% 10.00%

Publicador: