109 resultados para Femtosecond laser ablations
Resumo:
The microstructural dependence of electrical properties of (Ba, Sr)TiO3(BST) thin films were studied from the viewpoint of dc and ac electrical properties. The films were grown using a pulsed laser deposition technique in a temperature range of 300 to 600 degrees C, inducing changes in grain size, structure, and morphology. Consequently, two different types of films were realized, of which type I, was polycrystalline, multigrained, while type II was [100] oriented possessing a densely packed fibrous microstructure. Leakage current measurements were done at elevated temperatures to provide evidence of the conduction mechanism present in these films. The results revealed a contribution from both electronic and ionic conduction. In the case of type I films, two trapping levels were identified with energies around 0.5 and 2.73 eV, which possibly originate from oxygen vacancies V-O and Ti3+ centers, respectively. These levels act as shallow and deep traps and are reflected in the current-voltage characteristics of the BST thin films. The activation energy associated with oxygen vacancy motion in this case was obtained as 1.28 eV. On the contrary, type II films showed no evidence of deep trap energy levels, while the identified activation energy associated with shallow traps was obtained as 0.38 eV. The activation energy obtained for oxygen vacancy motion in type II films was around 1.02 eV. The dc measurement results were further elucidated through ac impedance analysis, which revealed a grain boundary dominated response in type I in comparison to type II films where grain response is highlighted. A comparison of the mean relaxation time of the two films revealed three orders of magnitude higher relaxation time in the case of type I films. Due to smaller grain size in type I films the grains were considered to be completely depleted giving rise to only grain boundary response for the bulk of the film. The activation energy obtained from conductivity plots agree very well with that of dc measurements giving values 1.3 and 1.07 eV for type I and type II films, respectively. Since oxygen vacancy transport have been identified as the origin of resistance degradation in BST thin films, type I films with their higher value of activation energy for oxygen ion mobility explains the improvement in breakdown characteristics under constant high dc field stress. The role of microstructure in controlling the rate of degradation is found useful in this instance to enhance the film properties under high electric field stresses. (C) 2000 American Institute of Physics. [S0021-8979(00)00418-7].
Resumo:
A high contrast laser writing technique based on laser induced efficient chemical oxidation in insitu textured Ge films is demonstrated. Free running Nd-YAG laser pulses are used for irradiating the films. The irradiation effects have been characterised using optical microscopy, electron spectroscopy and microdensitometry. The mechanism for the observed contrast has been identified as due to formation of GeO2 phase upon laser irradiation using X-ray initiated Auger spectroscopy (XAES) and X-ray photoelectron spectroscopy (XPS). The contrast in the present films is found to be nearly five times more than that known due to GeO phase formation in similar films.
Resumo:
A creep resistant permanent mould cast Mg alloy MRI 230D was laser surface alloyed with Al and a mixture of Al and Al2O3 using pulsed Nd:YAG laser irradiation at four different scan speeds in order to improve the corrosion and wear resistance. The microstructure, corrosion and wear behavior of the laser surface alloyed material is reported in this manuscript. The coating comprised of a featureless microstructure with cellular-dendritic microstructure near the interface and exhibited good interfacial bonding. A few solidification cracks reaching down to substrate were also observed. The two step coating with Al followed by a mixture of Al and Al2O3 exhibited a slightly better corrosion resistance than the single step coating with Al. In the long run, however, corrosion resistance of both the coatings became comparable to the as-cast alloy. The corroded surface of the laser surface alloyed specimens revealed a highly localized corrosion. The laser surface alloyed specimens exhibited an improvement in wear resistance. The laser scan speed did not exhibit a monotonic trend either in corrosion or wear resistance.
Resumo:
Polypyrrole (PPy) - multiwalled carbonnanotubes (MWCNT) nanocomposites with various MWCNT loading were prepared by in situ inversion emulsion polymerization technique. High loading of the nano filler were evaluated because of available inherent high interface area for charge separation in the nanocomposites. Solution processing of these conducting polymer nanocomposites is difficult because, most of them are insoluble in organic solvents. Device quality films of these composites were prepared by using pulsed laser deposition techniques (PLD). Comparative study of X-ray photoelectron spectroscopy (XPS) of bulk and film show that there is no chemical modification of polymer on ablation with laser. TEM images indicate PPy layer on MWCNT surface. SEM micrographs indicate that the MWCNT's are distributed throughout the film. It was observed that MWCNT in the composite held together by polymer matrix. Further more MWCNT diameter does not change from bulk to film indicating that the polymer layer remains intact during ablation. Even for very high loadings (80 wt.% of MWCNT's) of nanocomposites device quality films were fabricated, indicating laser ablation is a suitable technique for fabrication of device quality films. Conductivity of both bulk and films were measured using collinear four point probe setup. It was found that overall conductivity increases with increase in MWCNT loading. Comparative study of thickness with conductivity indicates that maximum conductivity was observed around 0.2 mu m. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Lead sulfide (PbS) microtowers on silicon substrates, having the physical properties of bulk PbS, have been synthesized. Optical nonlinearity studies using the open aperture z-scan technique employing 5 ns and 100 fs laser pulses reveal effective two-photon type absorption. For nanosecond excitation the nonlinear absorption coefficients (beta(eff)) are in the order of 10(-11) m W-1, two orders of magnitude less than the values reported for quantum confined PbS nanocrystals. For femtosecond excitation beta(eff) is of the order of 10(-14) m W-1. These results obtained in bulk PbS experimentally confirm the importance of quantum confinement in the enhancement of optical nonlinearities in semiconductor materials.
Resumo:
Cubic pyrochlore Bi1.5Zn1.0Nb1.5O7 thin films were deposited by pulsed laser ablation on Pt(200)/SiO2/Si at 500, 550, 600, and 650 degrees C. The thin films with (222) preferred orientation were found to grow at 650 degrees C with better crystallinity which was established by the lowest full-width half maxima of similar to 0.38. The dielectric response of the thin films grown at 650 degrees C have been characterized within a temperature range of 270-650 K and a frequency window of 0.1-100 kHz. The dielectric dispersion in the thin films shows a Maxwell-Wagner type relaxation with two different kinds of response confirmed by temperature dependent Nyquist plots. The ac conduction of the films showed a varied behavior in two different frequency regions. The power law exponent values of more than 1 at high frequency are explained by a jump-relaxation-model. The possibility of grain boundary related large polaronic hopping, due to two different power law exponents and transformation of double to single response in Nyquist plots at high temperature, has been excluded. The ``attempt jump frequency'' obtained from temperature dependent tangent loss and real part of dielectric constants, has been found to lie in the range of their lattice vibronic frequencies (10(12)-10(13) Hz). The activation energy arising from a large polaronic hopping due to trapped charge at low frequency region has been calculated from the ac conduction behavior. The range of activation energies (0.26-0.59. eV) suggests that the polaronic hopping at low frequency is mostly due to oxygen vacancies. (C) 2010 American Institute of Physics. doi:10.106311.3457335]
Resumo:
Third-order nonlinear absorption and refraction coefficients of a few-layer boron carbon nitride (BCN) and reduced graphene oxide (RGO) suspensions have been measured at 3.2 eV in the femtosecond regime. Optical limiting behavior is exhibited by BCN as compared to saturable absorption in RGO. Nondegenerate time-resolved differential transmissions from BCN and RGO show different relaxation times. These differences in the optical nonlinearity and carrier dynamics are discussed in the light of semiconducting electronic band structure of BCN vis-a-vis the Dirac linear band structure of graphene. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
A variety of applications exist for reverse saturable absorbers (RSAs) in the area of optical pulse processing and computing. An RSA can be used as power limiter/pulse smoother and energy limiter/pulse shortner of laser pulses. A combination of RSA and saturable absorber (SA) can be used for mode locking and pulse shaping between high power laser amplifiers in oscillator amplifier chain. Also, an RSA can be used for the construction of a molecular spatial light modulator (SLM) which acts as an input/output device in optical computers. A detailed review of the theoretical studies of these processes is presented. Current efforts to find RSAs at desired wavelength for testing these theoretical predictions are also discussed.
Resumo:
Excimer laser irradiation at ambient temperature has been employed to produce nanostructured silicon surfaces. Nanoindentation was used to investigate the nanomechanical properties of the deformed surfaces as a function of laser parameters, such as the angle of incidence and number of laser pulses at a fixed laser fluence of 5 J cm(-2). A single-crystal silicon 311] surface was severely damaged by laser irradiation and became nanocrystalline with an enhanced porosity. The resulting laser-treated surface consisted of nanometer-sized particles. The pore size was controlled by adjusting the angle of incidence and the number of laser pulses, and varied from nanometers to microns. The extent of nanocrystallinity was large for the surfaces irradiated at a small angle of incidence and by a high number of pulses, as confirmed by x-ray diffraction and Raman spectroscopy. The angle of incidence had a stronger effect on the structure and nanomechanical properties than the number of laser pulses.
Resumo:
We demonstrate launching of laser-cooled Yb atoms in a cold atomic fountain. Atoms in a collimated thermal beam are first cooled and captured in a magneto-optical trap (MOT) operating on the strongly allowed S-1(0) -> P-1(1) transition at 399 nm (blue line). They are then transferred to a MOT on the weakly allowed S-1(0) -> P-3(1) transition at 556 nm (green line). Cold atoms from the green MOT are launched against gravity at a velocity of around 2.5 m/s using a pair of green beams. We trap more than 107 atoms in the blue MOT and transfer up to 70% into the green MOT. The temperature for the odd isotope Yb-171 is similar to 1 mK in the blue MOT, and reduces by a factor of 40 in the green MOT.
Resumo:
Laser sintering was carried out using a high power continuous-wave CO2 laser to prepare pellets of zirconia (ZrO2), hafnia (HfO2) and yttria (Y2O3) mixed oxides as starting materials in the deposition of optical coatings. Hardened recrystallized pellets appeared to have been formed during laser treatment. X-ray diffraction analysis revealed a monoclinic-to-tetragonal phase transformation in the binary system while the ternary system was found to have a mixture of two crystalline phases. Cross-sectional scanning electron microscopy showed two isothermal crystalline regions in the ternary system. The optical inhomogeneity was low in the films deposited from the laser-fused pellets, but the absorption at a wavelength of 351 nm increased with increasing HfO2 content. The films deposited from laser-fused pellets were analysed by electron spectroscopy for chemical analysis and found to be stoichiometric and homogeneous.