222 resultados para Fast Fourier transform (FFT)
Resumo:
The photolytic and photocatalytic degradation of the copolymers poly(methyl methacrylate-co-butyl methacrylate) (MMA–BMA), poly(methyl methacrylate-co-ethyl acrylate) (MMA–EA) and poly(methyl methacrylate-co-methacrylic acid) (MMA–MAA) have been carried out in solution in the presence of solution combustion synthesized TiO2 (CS TiO2) and commercial Degussa P-25 TiO2 (DP 25). The degradation rates of the copolymers were compared with the respective homopolymers. The copolymers and the homopolymers degraded randomly along the chain. The degradation rate was determined using continuous distribution kinetics. For all the polymers, CS TiO2 exhibited superior photo-activity compared to the uncatalysed and DP 25 systems, owing to its high surface hydroxyl content and high specific surface area. The time evolution of the hydroxyl and hydroperoxide stretching vibration in the Fourier transform-infrared (FT-IR) spectra of the copolymers indicated that the degradation rate follows the order MMA–MAA > MMA–EA > MMA–BMA. The same order is observed for the rate coefficients of photocatalytic degradation. The photodegradation rate coefficients were compared with the activation energy of pyrolytic degradation. In degradation by pyrolysis, it was observed that MMA–BMA was the least stable followed by MMA–EA and MMA–MAA. The observed contrast in the order of thermal stability compared to the photo-stability of these copolymers was attributed to the two different mechanisms governing the scission of the polymer and the evolution of the products.
Resumo:
Image fusion is a formal framework which is expressed as means and tools for the alliance of multisensor, multitemporal, and multiresolution data. Multisource data vary in spectral, spatial and temporal resolutions necessitating advanced analytical or numerical techniques for enhanced interpretation capabilities. This paper reviews seven pixel based image fusion techniques - intensity-hue-saturation, brovey, high pass filter (HPF), high pass modulation (HPM), principal component analysis, fourier transform and correspondence analysis.Validation of these techniques on IKONOS data (Panchromatic band at I m spatial resolution and Multispectral 4 bands at 4 in spatial resolution) reveal that HPF and HPM methods synthesises the images closest to those the corresponding multisensors would observe at the high resolution level.
Resumo:
Calcium sulphate (CaSO4) pseudomicrorods have been synthesized by alow-temperature hydrothermal method using CaSO4 powder as a precursor and hexadecylamine as a surfactant at 180 degrees C for at different intervals of time. The powder X-ray diffraction pattern indicates that the as-formed pseudomicrorods are of orthorhombic phase with lattice parameters a = 7.0023(4) angstrom, b = 6.9939(5) angstrom and c = 6.2434(4) angstrom. Scanning electron microscopy images show that the pseudomicrorods have diameters of about 0.2-2.5 mm and lengths of about 2-10 mm. Fourier transform infrared spectroscopy shows a strong doublet near 609 and 681 cm(-1) arising from nu(4) (SO42) bending vibrations. The strongest band observed at 1132 cm(-1) is associated with nu(3) (SO42-) stretching vibrations. The band near 420-450 cm(-1) is attributed to nu(2) (SO42-) bending vibrations. The Raman spectrum exhibits an intense peak at 1008 cm(-1) associated with the SO42- mode. The photoluminescence spectrum exhibits UV bands (330, 350 nm), strong green bands (402, 436 nm) and weak blue bands (503 nm). A widening of the optical band gap was observed as the particle size decreased.
Resumo:
Use of precoding transforms such as Hadamard Transforms and Phase Alteration for Peak to Average Power Ratio (PAPR) reduction in OFDM systems are well known. In this paper we propose use of Inverse Discrete Fourier Transform (IDFT) and Hadamard transform as precoding transforms in MIMO-OFDM systems to achieve low peak to average power ratio (PAPR). We show that while our approach using IDFT does not disturb the diversity gains of the MIMO-OFDM systems (spatial, temporal and frequency diversity gains), it offers a better trade-off between PAPR reduction and ML decoding complexity compared to that of the Hadamard transform precoding. We study in detail the amount of PAPR reduction achieved for the following two recently proposed full-diversity Space-Frequency coded MIMO-OFDM systems using both the IDFT and the Hadamard transform: (i) W. Su. Z. Safar, M. Olfat, K. J. R. Liu (IEEE Trans. on Signal Processing, Nov. 2003), and (ii) W. Su, Z. Safar, K. J. R. Liu (IEEE Trans. on Information Theory, Jan. 2005).
Resumo:
Single-step low-temperature solution combustion (LCS) synthesis was adopted for the preparation of LaMnO3+ (LM) nanopowders. The powders were well characterized by powder X-ray diffraction (PXRD), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS),surface area and Fourier transform infrared spectroscopy (FTIR). The PXRD of as-formed LM showed a cubic phase but, upon calcination (900degrees C, 6 h), it transformed into a rhombohedral phase. The effect of fuel on the formation of LM was examined, and its structure and magnetoresistance properties were investigated. Magnetoresistance (MR) measurements on LM were carried out at 0, 1, 4 and 7 T between 300 and 10 K. LM (fuel-to-oxidizer ratio; = 1) showed an MR of 17% at 1 T, whereas, for 4 and 7 T, it exhibited an MR of 45 and 55%, respectively, near the TM-I. Metallic resistivity data below TM-I showed that the double exchange interaction played a major role in this compound. It was interesting to observe that the sample calcined at 1200 degrees C for 3 h exhibited insulator behavior.
Resumo:
A reversible drug delivery system based on spontaneous deposition of a model protein into preformed microcapsules has been demonstrated for protein delivery applications. Layer-by-Layer assembly of poly(allylamine hydrochloride) (PAH) and poly(methacrylic acid) (PMA) onto polystyrene sulfonate (PSS) doped CaCO3 particles, followed by core removal yielded intact hollow microcapsules having a unique property to induce spontaneous deposition of bovine serum albumin (BSA) at pH below its isoelectric point of 4.8, where it was positively charged. These capsules showed reversible pH dependent open and closed states to fluorescence labeled dextran (FITC-Dextran) and BSA (FITC-BSA). The loading capacity of BSA increased from 9.1 x 10(7) to 2.03 x 10(8) molecules per capsule with decrease in pH from 4.5 to 3.The loading of BSA-FITC was observed by confocal laser scanning microscopy (CLSM), which showed homogeneous distribution of protein inside the capsule. Efficient loading of BSA was further confirmed by atomic force microscopy (AFM) and scanning electron microscopy (SEM).The interior capsule concentration was as high as 209 times the feeding concentration when the feeding concentration was increased from 1 to 10 mg/ml. The deposition was initially controlled by spontaneous loading mechanism at lower BSA concentration followed by diffusion controlled loading at higher concentration; which decreased the loading efficiency from 35% to 7%. Circular dichroism (CD) measurements and Fourier transform infrared spectroscopy (FTIR) confirmed that there was no significant change in conformation of released BSA in comparison with native BSA. The release was initially burst in the first 0.5 h and sustained up to 5 h. The hollow capsules were found to be biocompatible with mouse embryonic fibroblast (MEF) cells during in vitro cell culture studies. Thus these pH sensitive polyelectrolyte microcapsules may offer a promising delivery system for water soluble proteins and peptides. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Crystalline Bi5NbO10 nanoparticles have been achieved through a modified sol–gel process using a mixture of ethylenediamine and ethanolamine as a solvent. The Bi5NbO10 nanoparticles were characterized by X-ray diffraction (XRD), differential scanning calorimetry/thermogravimetry (DSC/TG), Fourier transform infrared spectroscopy (FT-IR), transmission electron microscopy (TEM) and Raman spectroscopy. The results showed that well-dispersed 5–60 nm Bi5NbO10 nanoparticles were prepared through heat-treating the precursor at 650 °C and the high density pellets were obtained at temperatures lower than those commonly employed. The frequency and temperature dependence of the dielectric constant and the electrical conductivity of the Bi5NbO10 solid solutions were investigated in the 0.1 Hz to 1 MHz frequency range. Two distinct relaxation mechanisms were observed in the plots of dielectric loss and the imaginary part of impedance (Z″) versus frequency in the temperature range of 200–350 °C. The dielectric constant and the loss in the low frequency regime were electrode dependent. The ionic conductivity of Bi5NbO10 solid solutions at 700 °C is 2.86 Ω−1 m−1 which is in same order of magnitude for Y2O3-stabilized ZrO2 ceramics at same temperature. These results suggest that Bi5NbO10 is a promising material for an oxygen ion conductor.
Resumo:
Presented here is the two-phase thermodynamic (2PT) model for the calculation of energy and entropy of molecular fluids from the trajectory of molecular dynamics (MD) simulations. In this method, the density of state (DoS) functions (including the normal modes of translation, rotation, and intramolecular vibration motions) are determined from the Fourier transform of the corresponding velocity autocorrelation functions. A fluidicity parameter (f), extracted from the thermodynamic state of the system derived from the same MD, is used to partition the translation and rotation modes into a diffusive, gas-like component (with 3Nf degrees of freedom) and a nondiffusive, solid-like component. The thermodynamic properties, including the absolute value of entropy, are then obtained by applying quantum statistics to the solid component and applying hard sphere/rigid rotor thermodynamics to the gas component. The 2PT method produces exact thermodynamic properties of the system in two limiting states: the nondiffusive solid state (where the fluidicity is zero) and the ideal gas state (where the fluidicity becomes unity). We examine the 2PT entropy for various water models (F3C, SPC, SPC/E, TIP3P, and TIP4P-Ew) at ambient conditions and find good agreement with literature results obtained based on other simulation techniques. We also validate the entropy of water in the liquid and vapor phases along the vapor-liquid equilibrium curve from the triple point to the critical point. We show that this method produces converged liquid phase entropy in tens of picoseconds, making it an efficient means for extracting thermodynamic properties from MD simulations.
Resumo:
Poly (3,4-ethylenedioxythiophene) (PEDOT) and poly (styrene sulphonic acid) (PSSA) supported platinum (Pt) electrodes for application in polymer electrolyte fuel cells (PEFCs) are reported. PEDOT-PSSA support helps Pt particles to be uniformly distributed on to the electrodes, and facilitates mixed electronic and ionic (H+-ion) conduction within the catalyst, ameliorating Pt utilization. The inherent proton conductivity of PEDOT-PSSA composite also helps reducing Nation content in PEFC electrodes. During prolonged operation of PEFCs, Pt electrodes supported onto PEDOT-PSSA composite exhibit lower corrosion in relation to Pt electrodes supported onto commercially available Vulcan XC-72R carbon. Physical properties of PEDOT-PSSA composite have been characterized by X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy and transmission electron microscopy. PEFCs with PEDOT-PSSA-supported Pt catalyst electrodes offer a peak power-density of 810 mW cm(-2) at a load current-density of 1800 mA cm(-2) with Nation content as low as 5 wt.% in the catalyst layer. Accordingly, the present study provides a novel alternative support for platinized PEFC electrodes.
Resumo:
Poly (3,4-ethylenedioxythiophene) (PEDOT) and poly (styrene sulphonic acid) (PSSA) supported platinum (Pt) electrodes for application in polymer electrolyte fuel cells (PEFCs) are reported. PEDOT-PSSA support helps Pt particles to be uniformly distributed on to the electrodes, and facilitates mixed electronic and ionic (H+-ion) conduction within the catalyst, ameliorating Pt utilization. The inherent proton conductivity of PEDOT-PSSA composite also helps reducing Nation content in PEFC electrodes. During prolonged operation of PEFCs, Pt electrodes supported onto PEDOT-PSSA composite exhibit lower corrosion in relation to Pt electrodes supported onto commercially available Vulcan XC-72R carbon. Physical properties of PEDOT-PSSA composite have been characterized by X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy and transmission electron microscopy. PEFCs with PEDOT-PSSA-supported Pt catalyst electrodes offer a peak power-density of 810 mW cm(-2) at a load current-density of 1800 mA cm(-2) with Nation content as low as 5 wt.% in the catalyst layer. Accordingly, the present study provides a novel alternative support for platinized PEFC electrodes
Resumo:
Ionic conductivity and other physico-chemical properties of a soft matter composite electrolyte comprising of a polymer-sodium salt complex and a non-ionic plastic crystal are discussed here. The electrolyte under discussion comprises of polyethyleneoxide (PEO)-sodium triflate (NaCF3SO3) and succinonitrile (SN). Addition of SN to PEO-NaCF3SO3 resulted in significant enhancement in ionic conductivity. At 50% SN concentration (with respect to weight of polymer), the polymer-plastic composite electrolyte room temperature (= 25 degrees C) ionic conductivity was similar to 1.1 x 10(-4) Omega(-1) cm(-1), approximately 45 times higher than PEO-NaCF3SO3. Observations from ac-impedance spectroscopy along with X-ray diffraction, differential scanning calorimetry and Fourier transform inrared spectroscopy strongly suggest the enhancement in the composite is ionicconductivity due to enhanced ion mobility via decrease in crystallinity of PEO. The free standing composite polymer-plastic electrolytes were more compliable than PEO-NaCF3SO3 thus exhibiting no detrimental effects of succinonitrile addition on the mechanical stability of PEO-NaCF3SO3. We propose that the exploratory PEO-NaCF3SO3-SN system.discussed here will eventually be developed as a prototype electrolyte.for sodium-sulfur batteries capable of operating at ambient and.sub-ambient conditions. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Gd2O3:Eu3+ (0.5-8.0 mol%) nanophosphors have been prepared by low temperature solution combustion method using metal nitrates as oxidizers and oxalyl dihydrazide (ODH) as a fuel. The phosphors are well characterized by powder X-ray diffraction (PXRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR) and photoluminescence (PL) techniques. PXRD patterns of as-formed and calcined (800 degrees C, 3 h) Gd2O3 powders exhibit monoclinic phase with mean crystallite sizes ranging from 20 to 50 nm. Eu3+ doping changes the structure from monoclinic to mixed phase of monoclinic and cubic. SEM micrographs shows the products are foamy, agglomerated and fluffy in nature due to the large amount of gases liberated during combustion reaction. Upon 254 nm excitation the photoluminescence of the Gd2O3:Eu3+ particles show red emission at 611 nm corresponding to D-5(0)-> F-7(2) transition. It is observed that PL intensity increases with calcination temperature. This might be attributed to better crystallization and eliminates the defects, which serve as centers of non-radiative relaxation for nanomaterials. It is observed that the optical energy gap (E-g) is widened with increase Eu3+ content. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The increase in optical band gap (photo bleaching) due to light illumination was studied at room temperature as well as at low (4.2 K) temperature for Sb/As2S3 multilayered film of 640 nm thickness by Fourier Transform Infrared Technique. The interdiffusion of Sb into As2S3 matrix results the formation of Sb-As2S3 ternary solid solutions which is explained by the change in optical band gap (E-g), absorption coefficient (alpha), Tauc parameter (B-1/2), Urbach edge (E-e). At the same time, photo darkening phenomena was observed in (As2S3)(0.93)Sb-0.07 film of same thickness both at low and room temperatures. From our X-ray Photoelectron Spectroscopy measurements,we are able to show that some of the As-As, S-S and Sb-Sb bonds are converted into As-S and S-Sb bonds in case of multilayers. We found that the energetically favoured heteropolar bond formation take place by a phonon-assisted mechanism using the lone pair pi electrons of S-2(0). But in case of (As2S3)(0.93)Sb-0.02 film, the homopolar bonds are playing a major role. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
We consider convolution equations of the type f * T = g, where f, g is an element of L-P (R-n) and T is a compactly supported distribution. Under natural assumptions on the zero set of the Fourier transform of T, we show that f is compactly supported, provided g is. Similar results are proved for non-compact symmetric spaces as well. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
Molybdenum-doped TiO2 organic-inorganic hybrid nanoparticles were synthesized under mild hydrothermal conditions by in situ surface modification using n-butylamine. This was carried out at 150 degrees C at autogeneous pressure over 18 h. n-Butylamine was selected as a surfactant since it produced nanoparticles of the desired size and shape. The products were characterized using powder X-ray diffraction, Fourier transform infrared spectrometry, dynamic light-scattering spectroscopy, UV-Vis spectroscopy and transmission electron microscopy. Chemical oxygen demand was estimated in order to determine the photodegradation efficiency of the molybdenum-doped TiO2 hybrid nanoparticles in the treatment of pharmaceutical effluents. It was found that molybdenum-doped TiO2 hybrid nanoparticles showed higher photocatalytic efficiency than untreated TiO2 nanoparticles.