70 resultados para FLUORESCENCE ENERGY-TRANSFER
Resumo:
Peripherally triarylborane decorated porphyrin (2) and its Zn(II) complex (3) have been synthesized. Compound 3 contains of two different Lewis acidic binding sites (Zn(II) and boron center). Unlike all previously known triarylborane based sensors, the optical responses of 3 toward fluoride and cyanide are distinctively different, thus enabling the discrimination of these two interfering anions. Metalloporphyrin 3 shows a multiple channel fluorogenic response toward fluoride and cyanide and also a selective visual colorimetric response toward cyanide. By comparison with model systems and from detailed photophysical studies on 2 and 3, we conclude that the preferential binding of fluoride occurs at the peripheral borane moieties resulting in the cessation of the EET (electronic energy transfer) process from borane to porphyrin core and with negligible negetive cooperative effects. On the other hand, cyanide binding occurs at the Zn(II) core leading to drastic changes in its absorption behavior which can be followed by the naked eye. Such changes are not observed when the boryl substituent is absent (e.g., Zn-TPP and TPP). Compounds 2 and 3 were also found to be capable of extracting fluoride from aqueous medium.
Resumo:
Phonon interaction with electrons or phonons or with structural defects result in a phonon mode conversion. The mode conversion is governed by the frequency wave-vector dispersion relation. The control over phonon mode or the screening of phonon in graphene is studied using the propagation of amplitude modulated phonon wave-packet. Control over phonon properties like frequency and velocity opens up several wave guiding, energy transport and thermo-electric applications of graphene. One way to achieve this control is with the introduction of nano-structured scattering in the phonon path. Atomistic model of thermal energy transport is developed which is applicable to devices consisting of source, channel and drain parts. Longitudinal acoustic phonon mode is excited from one end of the device. Molecular dynamics based time integration is adopted for the propagation of excited phonon to the other end of the device. The amount of energy transfer is estimated from the relative change of kinetic energy. Increase in the phonon frequency decreases the kinetic energy transmission linearly in the frequency band of interest. Further reduction in transmission is observed with the tuning of channel height of the device by increasing the boundary scattering. Phonon mode selective transmission control have potential application in thermal insulation or thermo-electric application or photo-thermal amplification.
Resumo:
Full-color emissive organic materials have attracted significant attention in recent years as key components in display and lighting devices based on OLEDs. An ideal white-light emitter demands simultaneous emission of red, green and blue with nearly similar distribution of intensities covering the entire region of visible spectra. However, the design of such white-light emitters is not straightforward. Mixing several emitters is seldom successful owing to the negative effects of intermolecular interactions and energy transfer processes. Nonetheless, these fundamental questions have been addressed in recent times by several research groups of vastly different expertise leading to a considerable progress in the field of organic white-light emitters. The designs cover a large area of the chemistry ranging from frustrated energy transfer to simple protonation or from designed self-assembly to simple mixing of materials. In this review, the concepts and rational approaches underlying the design of white-light emissive organic materials are described. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
This paper demonstrates the role of solvent in selectivity and sensitivity of a series of electron-rich compounds for the detection of trace amounts of picric acid. Two new electron-rich fluorescent esters (6, 7) containing a triphenylamine backbone as well as their analogous carboxylic acids (8, 9) have been synthesized and characterized. Fluorescent triphenylamine coupled with an ethynyl moiety constitutes p-electron-rich selective and sensitive probes for electron-deficient picric acid (PA). In solution, the high sensitivity of all the sensors toward PA can be attributed to a combined effect of the ground-state charge-transfer complex formation and resonance energy transfer between the sensor and analyte. The acids 8 and 9 also showed enhanced sensitivity for nitroaromatics in the solid state, and their enhanced sensitivity could be attributed to exciton migration due to close proximity of the neighboring acid molecules, as evident from the X-ray diffraction study. The compounds were found to be quite sensitive for the detection of trace amount of nitroaromatics in solution, solid, and contact mode.
Resumo:
GAF domains are a large family of regulatory domains, and a subset are found associated with enzymes involved in cyclic nucleotide (cNMP) metabolism such as adenylyl cyclases and phosphodiesterases. CyaB2, an adenylyl cyclase from Anabaena, contains two GAF domains in tandem at the N-terminus and an adenylyl cyclase domain at the C-terminus. Cyclic AMP, but not cGMP, binding to the GAF domains of CyaB2 increases the activity of the cyclase domain leading to enhanced synthesis of cAMP. Here we show that the isolated GAFb domain of CyaB2 can bind both cAMP and cGMP, and enhanced specificity for cAMP is observed only when both the GAFa and the GAFb domains are present in tandem(GAFab domain). In silico docking and mutational analysis identified distinct residues important for interaction with either cAMP or cGMP in the GAFb domain. Structural changes associated with ligand binding to the GAF domains could not be detected by bioluminescence resonance energy transfer (BRET) experiments. However, amide hydrogen-deuterium exchange mass spectrometry (HDXMS) experiments provided insights into the structural basis for cAMP-induced allosteric regulation of the GAF domains, and differences in the changes induced by cAMP and cGMP binding to the GAF domain. Thus, our findings could allow the development of molecules that modulate the allosteric regulation by GAF domains present in pharmacologically relevant proteins.
Resumo:
Recent investigations have revealed powerful selection rules for resonant energy transfer between modes of nonlinear perturbations in global anti-de Sitter (AdS) space-time. It is likely that these selection rules are due to the highly symmetric nature of the underlying AdS background, though the precise relation has remained unclear. In this article, we demonstrate that the equation satisfied by the scalar field mode functions in AdS(d+1) has a hidden SU(d) symmetry, and explicitly specify the multiplets of this SU(d) symmetry furnished by the mode functions. We also comment on the role this structure might play in explaining the selection rules.
Resumo:
Ho3+ (0.25-7 mol%) doped Sr2CeO4 nanophosphors were synthesized by solution combustion method using urea as fuel. The structural properties of the nanophosphors were investigated by powder X-ray diffraction studies (PXRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) techniques. UV-Visible and photoluminescence (PL) spectroscopic techniques were used for analysing the optical properties of the nanoparticles. PXRD and TEM results revealed the formation of Sr2CeO4: Ho3+ nanocrystalline particles with orthorhombic crystal structure. From the UV-Vis studies the optical band gap energy found to decrease from 5.9 to 5.74 eV with increase in dopant concentration. The PL spectra exhibit the broad excitation band from 200 to 400 nm which concurs well with the commercial near UV LED. The PL spectra vary with the dopant content due to energy transfer from the host to the activator. In this present work we demonstrate that color tuning of phosphor can be achieved by merely varying the Ho3+ ions concentration. The CIE and CCT chromaticity coordinates suggests Sr2CeO4: Ho3+ nanophosphors may be potentially applicable as promising single - phased phosphors for lighting applications. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
Eu3+-activated layered LnOCl (Ln=La and Gd) phosphors were synthesized by the conventional solid-state method at relatively low temperature (700 degrees C) and shorter duration of 2 h. The structural parameters were refined by the Rietveld refinement analysis and confirmed by the high resolution transmission electron microscopy (HRTEM). Both the compounds were crystallized in the tetragonal structure with space group P4/nmm (No. 129). The homogeneity of the elements were analyzed by TEM mapping and found to be uniformly distributed. The photoluminescence spectra revealed that the intensity of D-5(0)-> F-7(2) transition (619 nm) was more intense in Eu3+-activated GdOCl compared to LaOCl. This was due to the property of Gd3+ ions to act as an intermediate sublattice to facilitate the energy transfer to Eu3+ ions. Intensity parameters and radiative properties such as transition probabilities, radiative lifetime and branching ratio were calculated using the Judd-Ofelt theory. The CIE color coordinates result revealed that the Eu3+-activated GdOCl (0.641, 0.354) phosphor was close to the commercial red phosphors like, Y2O3:Eu3+ (0.645, 0.347), (Y2OS)-S-2:Eu3+ (0.647, 0.343) and National Television System Committee (NTSC) (0.67, 0.33). The results suggest that the present GdOCl:Eu3+ compound acts as a potential candidate for red phosphor materials.
Resumo:
The design and synthesis of two structurally close and complementarily fluorescent boron based molecular siblings 2 and 3 are reported. The luminescence properties of individual triads are modulated to complement each other by controlling the intramolecular energy transfer in 2 and 3. The binary mixture of 2 and 3 emits white-light.
Resumo:
Triarylborane-A(2)H(2) (1) and triarylborane-Zn-A(2)H(2) porphyrins (2) have been synthesized by acid catalyzed condensation of 4-dimesitylboryl-benzaldehyde and dipyrromethane under ambient conditions. Compounds 1 and 2 showed multiple emission bands upon excitation at the triarylborane dominated absorption region (350 nm). Detailed experimental and computational studies show that the multiple emission features of 1 and 2 arise as a result of a partial energy transfer from the donor (triarylborane) to the acceptor (porphyrin) moieties. Compounds 1 and 2 showed very high selectivities towards fluoride ions compared to other competing anions.