213 resultados para Ether (Space)
Resumo:
The integral diaphragm pressure transducers machined out of precipitation hardened martensite stainless steel (APX4) are widely used for propellant pressure measurements in space applications. These transducers are expected to exhibit dimensional stability and linearity for their entire useful life. These vital factors are very critical for the reliable performance and dependability of the pressure transducers. However, these transducers invariably develop internal stresses during various stages of machining. These stresses have an adverse effect on the performance of the transducers causing deviation from linearity. In order to eliminate these possibilities, it was planned to cryotreat the machined transducers to improve both the long-term linearity and dimensional stability. To study these effects, an experimental cryotreatment unit was designed and developed based on the concept of indirect cooling using the concept of cold nitrogen gas forced closed loop convection currents. The system has the capability of cryotreating large number of samples for varied rates of cooling, soaking and warm-up. After obtaining the initial levels of residual stress and retained austenite using X-ray diffraction techniques, the pressure transducers were cryotreated at 98 K for 36 h. Immediately after cryotreatment, the transducers were tempered at 510 degrees C for 3 h in vacuum furnace. Results after cryo treatment clearly indicated significant reduction in residual stress levels and conversion of retained austenite to martensite. These changes have brought in improvements in long term zero drift and dimensional stability. The cryotreated pressure transducers have been incorporated for actual space applications. (c) 2010 Published by Elsevier Ltd.
Resumo:
The authors study the trajectories of charged particles in Ernst's space-time representing a static black hole immersed in a magnetic field. They find bound orbits always exist for realistic magnetic field strengths. A similar investigation is carried out for the case of Melvin's magnetic universe and for a corresponding test field superposed on a flat space-time.
Resumo:
In the present study, an attempt was made to study the acute and sub-acute toxicity profile of G3-COOH Poly (propyl ether imine) PETIM] dendrimer and its use as a carrier for sustained delivery of model drug ketoprofen. Drug-dendrimer complex was prepared and characterized by FTIR, solubility and in vitro drug release study. PETIM dendrimer was found to have significantly less toxicity in A541 cells compared to Poly amido amine (PAMAM) dendrimer. Further, acute and 28 days sub-acute toxicity measurement in mice showed no mortality, hematological, biochemical or histopathological changes up to 80 mg/kg dose of PETIM dendrimer. The results of study demonstrated that G3-COOH PETIM dendrimer can be used as a safe and efficient vehicle for sustained drug delivery. (C) 2010 Elsevier Masson SAS. All rights reserved.
Resumo:
An algorithm to generate a minimal spanning tree is presented when the nodes with their coordinates in some m-dimensional Euclidean space and the corresponding metric are given. This algorithm is tested on manually generated data sets. The worst case time complexity of this algorithm is O(n log2n) for a collection of n data samples.
Crystal and Molecular Structure of Sclerophytin F Methyl Ether from the Soft Coral Cladiella krempfi
Resumo:
new cembranoid diterpene was isolated from the soft coral Ckdiella h p f ifrom Minicoy Island (India), and its structure was established by X-ray crystallography to be sclerophytin F methyl ether (21 with the R absolute configuration at all six epimeric centers,assuming a configuration similar to that of sclerophytin C. Compound 2 may be an artifact of the isolation process.
Resumo:
Reaction of 2-bromomethyl-1-(2′-tetrahydropyranyloxy) benzene 3a with tetrachlorocatechol(TCC) in acetone in presence of anhydrous K2CO3 resulted in the formation of diastereomeric products to which cis- & trans- 6-chloro-8-hydroxy-8-(2-oxopropyl)spiro[9H-benzo[a]xanthen- 9,2′(1′H) benzofuran]-7(8H)-one (7a & 8a) structures were assigned, along with tetrachlorocatechol ethers (5a & 6a). Similar reaction of 3a with tetrabromocatechol(TBC) gave the expected monobromo compounds 7d & 8d along with the ethers 5d & 6d. When the reaction was repeated with substrates 3b–c with TCC/TBC in ketonic solvents(acetone/methyl ethyl ketone), the corresponding compounds 5b–c to 8b–c, 5e–f to 6e–f, 7e–g & 8e–h were obtained. A suitable explanation has been given for the formation of acetonyl compound 6 in this reaction.
Resumo:
The outer atmosphere of the sun called the corona has been observed during total solar eclipse for short periods (typically <6 min), from as early as the eighteenth century. In the recent past, space-based instruments have permitted us to study the corona uninterruptedly. In spite of these developments, the dynamic corona and its high temperature (1-2 million K) are yet to be Ally understood. It is conjectured that their dynamic nature and associated energetic events are possible reasons behind the high temperature. In order to study these in detail, a visible emission line space solar coronagraph is being proposed as a payload under the small-satellite programme of the Indian Space Research Organisation. The satellite is named as Aditya-1 and the scientific objectives of this payload are to study: (i) the existence of intensity oscillations for the study of wave-driven coronal heating; (ii) the dynamics and formation of coronal loops and temperature structure of the coronal features; (iii) the origin, cause and acceleration of coronal mass ejections (CMEs) and other solar active features, and (iv) coronal magnetic field topology and three-dimensional structures of CMEs using polarization information. The uniqueness of this payload compared to previously flown space instruments is as follows: (a) observations in the visible wavelength closer to the disk (down to 1.05 solar radii); (b) high time cadence capability (better than two-images per second), and (c) simultaneous observations of at least two spectral windows all the time and three spectral windows for short durations.
Resumo:
In order to study the efficiencies of catalytic moieties within and across dendrimer generations, partially and fully functionalized dendrimers were synthesized. Poly(alkyl aryl ether) dendrimers from zero to three generations, presenting 3 to 24 peripheral functionalities, were utilized to prepare as many as 12 catalysts. The dendrimer peripheries were partially and fully functionalized with triphenylphosphine in the first instance. A rhodium(I) metal complexation was performed subsequently to afford multivalent dendritic catalysts, both within and across generations. Upon synthesis, the dendritic catalysts were tested in the hydrogenation of styrene, in a substrate-to-catalyst ratio of 1:0.001. Turn-over-numbers were evaluated for each catalyst, from which significant increases in the catalytic activities were identified for multivalent catalysts than monovalent catalysts, both within and across generations. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The nonviral vector based gene delivery approach is attractive due to advantages associated with molecular-level modifications suitable for optimization of vector properties. In a new class of nonviral gene delivery systems, we herein report the potential of poly(ether Mine) (PETIM) dendrimers to mediate an effective gene delivery function. PETIM dendrimer, constituted with tertiary amine branch points, n-propyl ether linkers and primary amines at their peripheries, exhibits significantly reduced toxicities, over a broad concentration range. The dendrimer complexes pDNA effectively, protects DNA from endosomal damages, and delivers to the cell nucleus. Gene transfection studies, utilizing a reporter plasmid pEGFP-C1 and upon complexation with dendrimer, showed a robust expression of the encoded protein. The study shows that PETIM dendrimers are hitherto unknown novel gene delivery vectors, combining features of poly(ethylene imine)-based polymers and dendrimers, yet are relatively nontoxic and structurally precise.
Resumo:
In this paper, we show a method of obtaining general and orthogonal moments, specifically Legendre and Zernicke moments, from the Radon Transform data of a two-dimensional function. The regular or geometric moments are first evaluated directly from the projection data and the orthogonal moments are derived from these regular moments.
Resumo:
This paper addresses the problem of determining an optimal (shortest) path in three dimensional space for a constant speed and turn-rate constrained aerial vehicle, that would enable the vehicle to converge to a rectilinear path, starting from any arbitrary initial position and orientation. Based on 3D geometry, we propose an optimal and also a suboptimal path planning approach. Unlike the existing numerical methods which are computationally intensive, this optimal geometrical method generates an optimal solution in lesser time. The suboptimal solution approach is comparatively more efficient and gives a solution that is very close to the optimal one. Due to its simplicity and low computational requirements this approach can be implemented on an aerial vehicle with constrained turn radius to reach a straight line with a prescribed orientation as required in several applications. But, if the distance between the initial point and the straight line to be followed along the vertical axis is high, then the generated path may not be flyable for an aerial vehicle with limited range of flight path angle and we resort to a numerical method for obtaining the optimal solution. The numerical method used here for simulation is based on multiple shooting and is found to be comparatively more efficient than other methods for solving such two point boundary value problem.
Resumo:
Large MIMO systems with tens of antennas in each communication terminal using full-rate non-orthogonal space-time block codes (STBC) from Cyclic Division Algebras (CDA) can achieve the benefits of both transmit diversity as well as high spectral efficiencies. Maximum-likelihood (ML) or near-ML decoding of these large-sized STBCs at low complexities, however, has been a challenge. In this paper, we establish that near-ML decoding of these large STBCs is possible at practically affordable low complexities. We show that the likelihood ascent search (LAS) detector, reported earlier by us for V-BLAST, is able to achieve near-ML uncoded BER performance in decoding a 32x32 STBC from CDA, which employs 32 transmit antennas and sends 32(2) = 1024 complex data symbols in 32 time slots in one STBC matrix (i.e., 32 data symbols sent per channel use). In terms of coded BER, with a 16x16 STBC, rate-3/4 turbo code and 4-QAM (i.e., 24 bps/Hz), the LAS detector performs close to within just about 4 dB from the theoretical MIMO capacity. Our results further show that, with LAS detection, information lossless (ILL) STBCs perform almost as good as full-diversity ILL (FD-ILL) STBCs. Such low-complexity detectors can potentially enable implementation of high spectral efficiency large MIMO systems that could be considered in wireless standards.