273 resultados para Engineering properties of geopolymer


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Most of the Greater Cochin area, which is undergoing rapid industrialisation, consists of extremely soft marine clay calling for expensive deep foundations. This paper presents a study on the physical properties and engeering characteristics of Cochin marine clays. These marine clays are characterised by high Atterberg limits and natural water contents. They are moderately sensitive with liquidity indices ranging over 0.46 to 0.87.The grain size distribution shows almost equal fractions of clay and silt size with sand content varying around 20%. Use of a dispersing agent in carrying out grain size distribution test plays an important role. The fabric of these clays had been identified as flocculant. The pore water has low salinity which results in marginal changes in properties on washing.Consolidation test results showed a preconsolidation pressure of up to about 0.5 kg/cm2 with high compression indices. Compression index vs liquid limit yielded a correlation comparable to that of published data. The undisturbed samples have a much larger coefficient of secondary consolidation as a result of flocculant fabric. These clays have very low undrained shear strength.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the present investigation, a very good combination of strength and ductility, 630MPa 0.2% proof stress and 14.8% elongation to fracture in tensile test, has been obtained for the 7075 Al alloy after optimizing the processing parameters for spray forming, hot extruding the spray deposit, and peak aging the samples taken from the extruded rod. The spray deposits contained some porosity but it was almost eliminated on hot extrusion. Electron probe microanalysis revealed that even though spray forming was carried out in an open atmosphere, it did not affect the oxygen content and its distribution in the material on spray forming, because the atomizing argon gas provided a protective cover to molten droplets and prevented their oxidation. The chemical composition of the spray-formed material was found to be almost the same as the raw material, and the major alloying elements were found to be uniformly distributed in the extruded rod.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The structural changes occurring during warm working of Cd-1.5 pct Zn alloy and their effect on the subsequent mechanical properties are studied. It is observed that changes in grain size and preferred orientation are important to a large extent in controlling the mechanical strength. The Hall-Petch slope,R decreases in the warm worked material while the friction stress, σo increases. The lowerR values are attributed to the development of a (101l) texture and the higher σo values are interpreted on the basis of changes in the basal texture.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The different formalisms for the representation of thermodynamic data on dilute multicomponent solutions are critically reviewed. The thermodynamic consistency of the formalisms are examined and the interrelations between them are highlighted. The options are constraints in the use of the interaction parameter and Darken's quadratic formalisms for multicomponent solutions are discussed in the light of the available experimental data. Truncatred Maclaurin series expansion is thermodynamically inconsistent unless special relations between interaction parameters are invoked. However, the lack of strict mathematical consistency does not affect the practical use of the formalism. Expressions for excess partial properties can be integrated along defined composition paths without significant loss of accuracy. Although thermodynamically consistent, the applicability of Darken's quadratic formalism to strongly interacting systems remains to be established by experiment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In recent times, there has been an ever-growing need for polymer-based multifunctional materials for electronic packaging applications. In this direction, epoxy-Al2O3 nanocomposites at low filler loadings can provide an excellent material option, especially from the point of view of their dielectric properties. This paper reports the dielectric characteristics for such a system, results of which are observed to be interesting, unique, and advantageous as compared to traditionally used microcomposite systems. Nanocomposites are found to display lower values of permittivity/tan delta over a wide frequency range as compared to that of unfilled epoxy. This surprising observation has been attributed to the interaction between the epoxy chains and the nanoparticles, and in this paper this phenomenon is analyzed using a dual layer interface model reported for polymer nanocomposites. As for the other dielectric properties associated with the nanocomposites, the nano-filler loading seems to have a significant effect. The dc resistivity and ac dielectric strength of the nanocomposites were observed to be lower than that of the unfilled epoxy system at the investigated filler loadings, whereas the electrical discharge resistant properties showed a significant enhancement. Further analysis of the results obtained in this paper shows that the morphology of the interface region and its characteristics decide the observed interesting dielectric behaviors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The thermodynamic activity of sodium oxide (Na2O) in the Nasicon solid solution series, Na1+xZr2SixO12, has been measured in the temperature range 700�1100 K using solid state galvanic cells: Pt|CO2 + O2|Na2CO3?Na1+xZr2SixP3-xO12?(Y2O3)ZrO2?In + In2O3|Ta, Pt for 1 = ? = 2.5, and Pt?CO2 + O2?Na2CO3?ß-alumina?Na1+xZr2SixP3-xO12?Ar + O2?Pt for x = 0, 0.5, 2.5, and 3. The former cell, where the Nasicon solid solution is used as an electrolyte along with yttria-stabilized zirconia, is well suited for Nasicon compositions with high ionic conductivity. In the latter cell, ß-alumina is used as an electrolyte and the Nasicon solid solution forms an electrode. The chemical potential of Na2O is found to increase monotonically with x at constant temperature. The partial entropy of Na2O decreases continuously with x. However, the partial enthalpy exhibits a maximum at x = 2. This suggests that the binding energy is minimum at the composition where ionic conductivity and cell volume have maximum values.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Excimer laser irradiation at ambient temperature has been employed to produce nanostructured silicon surfaces. Nanoindentation was used to investigate the nanomechanical properties of the deformed surfaces as a function of laser parameters, such as the angle of incidence and number of laser pulses at a fixed laser fluence of 5 J cm(-2). A single-crystal silicon 311] surface was severely damaged by laser irradiation and became nanocrystalline with an enhanced porosity. The resulting laser-treated surface consisted of nanometer-sized particles. The pore size was controlled by adjusting the angle of incidence and the number of laser pulses, and varied from nanometers to microns. The extent of nanocrystallinity was large for the surfaces irradiated at a small angle of incidence and by a high number of pulses, as confirmed by x-ray diffraction and Raman spectroscopy. The angle of incidence had a stronger effect on the structure and nanomechanical properties than the number of laser pulses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The fracture properties of different concrete-concrete interfaces are determined using the Bazant's size effect model. The size effect on fracture properties are analyzed using the boundary effect model proposed by Wittmann and his co-workers. The interface properties at micro-level are analyzed through depth sensing micro-indentation and scanning electron microscopy. Geometrically similar beam specimens of different sizes having a transverse interface between two different strengths of concrete are tested under three-point bending in a closed loop servo-controlled machine with crack mouth opening displacement control. The fracture properties such as, fracture energy (G(f)), length of process zone (c(f)), brittleness number (beta), critical mode I stress intensity factor (K-ic), critical crack tip opening displacement CTODc (delta(c)), transitional ligament length to free boundary (a(j)), crack growth resistance curve and micro-hardness are determined. It is seen that the above fracture properties decrease as the difference between the compressive strength of concrete on either side of the interface increases. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A solid-state electrochemical cell, with yttria-stabilized zirconia as the electrolyte and pure O-2 gas at 0.1 MPa as the reference electrode, has been used to measure the oxygen chemical potential corresponding to the equilibrium between beta-Rh2O3 and RhO2 in the temperature range from 850 to 1050K. Using standard Gibbs energy of formation of beta-Rh2O3 available in the literature and the measured oxygen potential, the standard Gibbs free energy of formation of RhO2 is derived as a function of temperature: Delta G(f)degrees(RhO2)(+/- 71)/J mol(-1) = 238,418 + 179.89T Using an estimated value of Delta C-p degrees; for the formation reaction of RhO2 from its elements, the standard enthalpy of formation, standard entropy and isobaric heat capacity of RhO2 at 298.15 K are evaluated: Delta H-f degrees (298.15 K)(+/- 164)/kJ mol(-1) = -244.94, S degrees (298.15 K)(+/- 3.00)/J mol(-1) K-1 = 45.11 and C-p degrees(298.15 K)(+/- 2.6)1mol(-1) K-1 =64.28. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Data on molar excess enthalpy on mixing at 298.15 K and 308.15 K, vapor-liquid equilibrium, latent heats of vaporization at 91.444 kPa and vapor pressures for the system toluene – 1, 1, 1-trichloroethane are presented. A simple adiabatic calorimeter designed for molar excess enthalpy measurements is described, tested and used. On présente, dans le cas du système toluène – 1, 1, 1-trichloréthane, des résultats relatifs aux grandeurs suivantes: a) enthalpie molaire d'excès à 298.15 K et 308.15 K; b) équilibre liquid-vapeur; c) chaleurs latentes de vaporisation à une pression absolue de 91.444 kP; d) pressions de vapeur. On décrit un calorimètre adiabatique simple, conçu pour mesurer l'enthalpie molaire d'excès, dont on a fait l'essai.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents the experimental data on vapor-liquid equilibrium and heats of mixing of mixtures of benzene with 1, e-dichloroethane, 1, l, 1 -trichloroethane, and lt1,2,2-tetrachloroethane.A literature survey revealed that the heats of mixing of benzene-l,2-dichloroethane have been studied and Table I shows the extent of study on this system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nanocrystalline Fe53Co47 alloy was synthesized by a single-step transmetallation chemical method at room temperature. The Fe53Co47 alloy nanoparticles of 77 and 47 wt% were dispersed in silica matrix by the sol-gel process using tetraethyl orthosilcate. Structural studies reveal that the as-prepared alloy powders are in bcc phase and silica is in an amorphous state. The phase-transition temperature and Mossbauer spectra analysis of the Fe-Co alloy establishes the homogeneous alloy formation. A saturation magnetization of 218 emu/g was obtained for pure FeCo alloy at room temperature. Scanning electron microscopic analysis demonstrates the hollow-sphere morphology for FeCo alloy particles. Magnetic nanocomposite consisting of 47 wt% FeCo-silica shows enhanced thermal stability over the native FeCo alloy. Electrical and dielectric properties of 47 wt% FeCo-silica nanocomposites were investigated as a function of frequency and temperature. It was found that the dielectric constants and dielectric loss were stable throughout the measured temperature (310-373 K). Our results indicate that FeCo-silica nanocomposite is a promising candidate for high-frequency applications. (C) 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim