66 resultados para Endogenous hormone
Resumo:
A new molecular probe based on an oxidized bis-indolyl skeleton has been developed for rapid and sensitive visual detection of cyanide ions in water and also for the detection of endogenously bound cyanide. The probe allows the naked-eye detection of cyanide ions in water with a visual color change from red to yellow ((max)=80nm) with the immediate addition of the probe. It shows high selectivity towards the cyanide ion without any interference from other anions. The detection of cyanide by the probe is ratiometric, thus making the detection quantitative. A Michael-type addition reaction of the probe with the cyanide ion takes place during this chemodosimetric process. In water, the detection limit was found to be at the parts per million level, which improved drastically when a neutral micellar medium was employed, and it showed a parts-per-billion-level detection, which is even 25-fold lower than the permitted limits of cyanide in water. The probe could also efficiently detect the endogenously bound cyanide in cassava (a staple food) with a clear visual color change without requiring any sample pretreatment and/or any special reaction conditions such as pH or temperature. Thus the probe could serve as a practical naked-eye probe for in-field experiments without requiring any sophisticated instruments.
Resumo:
Callithrix jacchus (common marmoset) is a New World primate monkey, used as an animal model in biomedical research. Marmoset-specific follicle-stimulating hormone (FSH) preparation is required to improve superovulation protocols and to develop homologous FSH monitoring assays in these monkeys. In this study, we document the large-scale expression of recombinant marmoset FSH in methylotropic yeast, Pichia pastoris. The recombinant preparation was found to be immunologically active in Western blotting and radioimmunoassay. The preparation displayed receptor binding ability in radioreceptor assay. Based on the receptor binding ability, the yield of fermentation was estimated to be 7.2 mg/L. FSH-induced cAMP assay and estradiol assay revealed that the recombinant hormone is able to induce signal transduction. Both immunological and in vitro biological activity of marmoset FSH was found to be comparable to purified human pituitary FSH, which served as reference hormone for these assays. Thus, the study suggests that a Pichia expression system can be used for large-scale expression of bioactive recombinant marmoset FSH.
Resumo:
Mycobacterium tuberculosis (Mtb) has evolved protective and detoxification mechanisms to maintain cytoplasmic redox balance in response to exogenous oxidative stress encountered inside host phagocytes. In contrast, little is known about the dynamic response of this pathogen to endogenous oxidative stress generated within Mtb. Using a noninvasive and specific biosensor of cytoplasmic redox state of Mtb, we for first time discovered a surprisingly high sensitivity of this pathogen to perturbation in redox homeostasis induced by elevated endogenous reactive oxygen species (ROS). We synthesized a series of hydroquinone-based small molecule ROS generators and found that ATD-3169 permeated mycobacteria to reliably enhance endogenous ROS including superoxide radicals. When Mtb strains including multidrug-resistant (MDR) and extensively drug-resistant (XDR) patient isolates were exposed to this compound, a dose-dependent, long-lasting, and irreversible oxidative shift in intramycobacterial redox potential was detected. Dynamic redox potential measurements revealed that Mtb had diminished capacity to restore cytoplasmic redox balance in comparison with Mycobacterium smegmatis (Msm), a fast growing nonpathogenic mycobacterial species. Accordingly, Mtb strains were extremely susceptible to inhibition by ATD-3169 but not Msm, suggesting a functional linkage between dynamic redox changes and survival. Microarray analysis showed major realignment of pathways involved in redox homeostasis, central metabolism, DNA repair, and cell wall lipid biosynthesis in response to ATD-3169, all consistent with enhanced endogenous ROS contributing to lethality induced by this compound. This work provides empirical evidence that the cytoplasmic redox poise of Mtb is uniquely sensitive to manipulation in steady-state endogenous ROS levels, thus revealing the importance of targeting intramycobacterial redox metabolism for controlling TB infection. (C) 2015 The Authors. Published by Elsevier Inc.
Resumo:
Higher manganese silicide (HMS) based alloys with eutectic composition (Si-33.3 at% Mn) were prepared by arc-melting, melt-spinning and ball milling in order to evaluate the effect of microstructure on the thermal conductivity. Powder X-ray diffraction, SEM, EPMA and TEM analysis confirmed the presence of Si as a secondary phase distributed in the HMS matrix phase. Thermal properties of the samples were studied in the temperature range of 300-800 K. The microstructure refinement resulting from ball milling leads to a decrease of the thermal conductivity from 4.4 W/mK to 1.9 W/mK, whereas meltspinning is inefficient to this respect. The results show an opportunity to produce bulk higher manganese silicide alloys with reduced thermal conductivity in order to enhance its thermoelectric performance. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
Thermoelectric properties of semiconducting beta-FeSi2 containing a homogeneous distribution of Si secondary phase have been studied. The synthesis was carried out using arc melting followed by the densification by uniaxial hot pressing. Endogenous beta-FeSi2/Si composites were produced by the eutectoid decomposition of high-temperature alpha-Fe2Si5 phase. The aging heat treatments have been carried out at various temperatures below the equilibrium eutectoid temperature for various durations in order to tune the size of the eutectoid product. Thermal properties of the samples were studied in the temperature range of 100-350 A degrees C. The microstructural investigations support the fact that the finest microstructure generated through the eutectoid decomposition of the alpha-Fe2Si5 metastable phase is responsible of the phonon scattering. The results suggest an opportunity to produce bulk iron silicide alloys with reduced thermal conductivity in order to enhance its thermoelectric performance.
Novel PARP inhibitors sensitize human leukemic cells in an endogenous PARP activity dependent manner
Resumo:
Poly(ADP-ribose) polymerase (PARP) is a critical nuclear enzyme which safeguards genome stability from genotoxic insults and helps in DNA repair. Inhibition of PARP results in sustained DNA damage in cancer cells. PARP inhibitors are known to play an important role in chemotherapy as single agents in many DNA repair pathway deficient tumor cells or in combination with several other chemotherapeutic agents. In the present study, we synthesize and characterize novel pyridazine derivatives, and evaluate their potential for use as PARP inhibitors. Results show that pyridazine derivatives inhibited the PARP1 enzymatic activity at the nanomolar range and showed anti-proliferative activity in leukemic cells. Interestingly, human leukemic cell line, Nalm6, in which PARP1 and PARP2 expression as well as intrinsic PARP activity are high, showed significant sensitivity for the novel inhibitors compared to other leukemic cells. Among the inhibitors, P10 showed maximum inhibition of intrinsic PARP activity and inhibited cell proliferation in Nalm6 cells. Besides P10 also showed maximum inhibition against purified PARP1 protein, which was comparable to olaparib in our assays. Newly synthesized compounds also showed remarkable DNA trapping ability, which is a signature feature of many PARP inhibitors. Importantly, P10 also induced late S and G2/M arrest in Nalm6 cells, indicating accumulation of DNA damage. Therefore, we identify P10 as a potential PARP inhibitor, which can be developed as a chemotherapeutic agent.