168 resultados para Emission tuning
Resumo:
We prove that CdS nanocrystals can be thermodynamically stabilized in both wurtzite and zinc-blende crystallographic phases at will, just by the proper choice of the capping ligand. As a striking demonstration of this, the largest CdS nanocrystals (similar to 15 nm diameter) ever formed with the zinc-blende structure have been synthesized at a high reaction temperature of 310 degrees C, in contrast to previous reports suggesting the formation of zinc-blende CdS only in the small size limit (< 4.5 nm) or at a lower reaction temperature (<= 240 degrees C). Theoretical analysis establishes that the binding energy of trioctylphosphine molecules on the (001) surface of zinc-blende CdS is significantly larger than that for any of the wurtzite planes. Consequently, trioctylphosphine as a capping agent stabilizes the zinc-blende phase via influencing the surface energy that plays an important role in the overall energetics of a nanocrystal. Besides achieving giant zinc-blende CdS nanocrystals, this new understanding allows us to prepare CdSe and CdSe/CdS core/shell nanocrystals in the zinc-blende structure.
Resumo:
Detailed three-dimensional CFD simulations involving flow and combustion chemistry are used to study the effect of swirl induced by re-entrant piston bowl geometries on pollutant emissions from a single-cylinder diesel engine. The baseline engine configuration consists of a hemispherical piston bowl and an injector with finite sac volume. The first iteration involved using a torroidal, slightly re-entrant bowl geometry, and a sac-less injector. Pollutant emission measurements indicated a reduction in emissions with this modification. Simulations on both configurations were then conducted to understand the effect of the changes. The simulation results indicate that the selected piston bowl geometry could actually be reducing the in-cylinder swirl and turbulence and the emission reduction may be entirely due to the introduction of the sac-less injector. In-cylinder air motion was then studied in a number of combustion chamber geometries, and a geometry which produced the highest in-cylinder swirl and Turbulence Kinetic Energy (TKE) around the compression top dead centre (TDC) was identified. The optimal nature of this re-entrant piston bowl geometry is confirmed by detailed combustion simulations and emission predictions. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
This paper presents observations of SiO maser emission from 161 Mira variables distributed over a wide range of intrinsic parameters like spectral type, bolometric magnitude and amplitude of pulsation. The observations were made at 86.243 GHz, using the 10.4 m millimeter-wave telescope of the Raman Research Institute at Bangalore, India. These are the first observations made using this telescope. From these observations, we have established that the maser emission is restricted to Miras having mean spectral types between M6 and M10. The infrared period-luminosity relation for Mira variables is used to calculate their distances and hence estimate their maser luminosities from the observed fluxes. The maser luminosity is found to be correlated with the bolometric magnitude of the Mira variable. On an H-R diagram, the masing Mira variables are shown to lie in a region distinct from that for the non-masing ones.
Resumo:
In this paper, recent results on band A emission in chemical vapor-deposited diamond films have been analyzed within a vibronic model. The blue-band A (2.8 eV) spectra from undoped diamond films grown by two different techniques have been simulated using the same phonon density distribution g(Omega) and Huang-Rhys factor (S). The same g(Omega) at higher S gives a good fit with the green band A (2.32 eV) as well. This model provides a reasonable alternative approach to the long standing donor-acceptor pair recombination model.
Resumo:
This paper is aimed at investigating the acoustic emission activities during indentation toughness tests on an alumina based wear resistant ceramic and 25 wt% silicon carbide whisker (SIC,) reinforced alumina composite. It has been shown that the emitted acoustic emission signals characterize the crack growth during loading. and unloading cycles in an indentation test. The acoustic emission results indicate that in the case of the composite the amount of crack growth during unloading is higher than that of loading, while the reverse is true in case of the wear resistant ceramics. Acoustic emission activity observed in wear resistant ceramic is less than that in the case of composite. An attempt has been made to correlate the acoustic emission signals with crack growth during indentation test.
Resumo:
Single-wall carbon nanotubes (SWNTs) are fascinating systems exhibiting many novel physical properties. In this paper, we give a brief review of the structural, electronic, vibrational, and mechanical properties of carbon nanotubes. In situ resonance Raman scattering of SWNTs investigated under electrochemical biasing demonstrates that the intensity of the radial breathing mode varies significantly in a nonmonotonic manner as a function of the cathodic bias voltage, but does not change appreciably under anodic bias. These results can be quantitatively understood in terms of the changes in the energy gaps between the 1 D van Hove singularities in the electron density of states, arising possibly due to the alterations in the overlap integral of pi bonds between the p-orbitals of the adjacent carbon atoms. In the second part of this paper, we review our high-pressure X-ray diffraction results, which show that the triangular lattice of the carbon nanotube bundles continues to persist up to similar to10 GPa. The lattice is seen to relax just before the phase transformation, which is observed at similar to10 GPa. Further, our results display the reversibility of the 2D lattice symmetry even after compression up to 13 GPa well beyond the 5 GPa value observed recently. These experimental results explicitly validate the predicted remarkable mechanical resilience of the nanotubes.
Resumo:
The oxygen content of La0.5Ca0.5MnOy was tuned by annealing the samples at high temperatures in flowing nitrogen with graphite powder nearby. The reduction of oxygen content has dramatic effect on the electrical transport and magnetic properties. The samples with y=2.983, 2.83, and 2.803 show an insulator-metal transition, and an unusual temperature and magnetic-field dependence of the magnetoresistance. The paramagnetic-ferromagnetic transition also shifts to lower temperatures and the antiferromagnetic transition at lower temperature is suppressed. The results are discussed in terms of the effect of oxygen vacancies on the various properties of La0.5Ca0.5MnOy. (C) 2002 American Institute of Physics.
Resumo:
We present the results of sub-mm, mm (850 mum, 450 mum and 1250 mum) and radio (1.4 and 4.8 GHz) continuum observations of a sample of 27 K-selected Extremely Red Objects, or EROs, (14 of which form a complete sample with K < 20 and I - K > 5) aimed at detecting dusty starbursts, deriving the fraction of UltraLuminous Infrared Galaxies (ULIGs) in ERO samples, and constraining their redshifts using the radio-FIR correlation. One ERO was tentatively detected at 1250 mum and two were detected at 1.4 GHz, one of which has a less secure identification as an ERO counterpart. Limits on their redshifts and their star forming properties are derived and discussed. We stacked the observations of the undetected objects at 850 mum, 1250 mum and 4.8 GHz in order to search for possible statistical emission from the ERO population as a whole, but no significant detections were derived either for the whole sample or as a function of the average NIR colours. These results strongly suggest that the dominant population of EROs with K < 20 is not comprised of ULIGs like HR 10, but is probably made of radio-quiet ellipticals and weaker starburst galaxies with L < 10(12) L . and SFR < few hundred M. yr(-1).
Resumo:
This paper presents computational and experimental results on a new burner configuration with a mild combustion concept with heat release rates up to 10 MW/m(3). The burner configuration is shown to achieve mild combustion by using air at ambient temperature at high recirculation rates (similar to250%-290%) both experimentally and computationally. The principal features of the configuration are: (1) a burner with forward exit for exhaust gases; (2) injection of gaseous fuel and air as multiple, alternate, peripheral highspeed jets at the bottom at ambient temperature, thus creating high enough recirculation rates of the hot combustion products into fresh incoming reactants; and (3) use of a suitable geometric artifice-a frustum of a cone to help recirculation. The computational studies have been used to reveal the details of the flow and to optimize the combustor geometry based on recirculation rates. Measures, involving root mean square temperature fluctuations, distribution of temperature and oxidizer concentration inside the proposed burner, and a classical turbulent diffusion jet flame, are used to distinguish between them quantitatively. The system, operated at heat release rates of 2 to 10 MW/m(3) (compared to 0.02 to 0.32 MW/m(3) in the earlier studies), shows a 10-15 dB reduction in noise in the mild combustion mode compared to a simple open-top burner and exhaust NOx emission below 10 ppm for a 3 kW burner with 10% excess air. The peak temperature is measured around 1750 K, approximately 300 K lower than the peak temperature in a conventional burner.
Resumo:
Animals communicate in non-ideal and noisy conditions. The primary method they use to improve communication efficiency is sender-receiver matching: the receiver's sensory mechanism filters the impinging signal based on the expected signal. In the context of acoustic communication in crickets, such a match is made in the frequency domain. The males broadcast a mate attraction signal, the calling song, in a narrow frequency band centred on the carrier frequency (CF), and the females are most sensitive to sound close to this frequency. In tree crickets, however, the CF changes with temperature. The mechanisms used by female tree crickets to accommodate this change in CF were investigated at the behavioural and biomechanical level. At the behavioural level, female tree crickets were broadly tuned and responded equally to CFs produced within the naturally occurring range of temperatures (18 to 27 degrees C). To allow such a broad response, however, the transduction mechanisms that convert sound into mechanical and then neural signals must also have a broad response. The tympana of the female tree crickets exhibited a frequency response that was even broader than suggested by the behaviour. Their tympana vibrate with equal amplitude to frequencies spanning nearly an order of magnitude. Such a flat frequency response is unusual in biological systems and cannot be modelled as a simple mechanical system. This feature of the tree cricket auditory system not only has interesting implications for mate choice and species isolation but may also prove exciting for bio-mimetic applications such as the design of miniature low frequency microphones.
Resumo:
We present the first results of an observational programme undertaken to map the fine structure line emission of singly ionized carbon ([ CII] 157 : 7409 mum) over extended regions using a Fabry Perot spectrometer newly installed at the focal plane of a 100 cm balloon- borne far- infrared telescope. This new combination of instruments has a velocity resolution of similar to 200 km s(-1) and an angular resolution of 1.'5. During the first flight, an area of 30' x 15' in Orion A was mapped. These observations extend over a larger area than previous observations, the map is fully sampled and the spectral scanning method used enables reliable estimation of the continuum emission at frequencies adjacent to the [ CII] line. The total [ CII] line luminosity, calculated by considering up to 20% of the maximum line intensity is 0.04% of the luminosity of the far- infrared continuum. We have compared the [ CII] intensity distribution with the velocity- integrated intensity distributions of (CO)-C-13(1- 0), CI(1- 0) and CO( 3- 2) from the literature. Comparison of the [ CII], [ CI] and the radio continuum intensity distributions indicates that the largescale [ CII] emission originates mainly from the neutral gas, except at the position of M 43, where no [ CI] emission corresponding to the [ CII] emission is seen. Substantial part of the [ CII] emission from here originates from the ionized gas. The observed line intensities and ratios have been analyzed using the PDR models by Kaufman et al. ( 1999) to derive the incident UV flux and volume density at a few selected positions. The models reproduce the observations reasonably well at most positions excepting the [ CII] peak ( which coincides with the position of theta(1) Ori C). Possible reason for the failure could be the simplifying assumption of a homogeneous plane parallel slab in place of a more complicated geometry.
Resumo:
We report on the combined X-ray and radio observations of the type Ic SN 2002ap, using XMM-Newton TOO observation of M 74 and the Giant Metrewave Radio Telescope ( GMRT). We account for the presence of a nearby source in the pre-supernova Chandra field of view in our measurements of the X-ray flux (0.3-10 KeV) 5.2 days after the explosion. The X-ray spectrum is well fitted by a power law spectrum with photon index alpha = 2.6. Our results suggest that the prompt X-ray emission originates from inverse Compton scattering of photospheric thermal emission by energetic electrons. Radio observations with the GMRT at 610 MHz (8 days after the explosion) and 1420 MHz (70 days after the explosion) are combined with the high frequency VLA observations of SN 2002ap reported by Berger et al. ( 2002), and the early radiospheric properties of SN 2002ap are compared with similar data from two other supernovae. Finally, the GMRT radio map reveals four other X-ray sources in the field of view of M 74 with radio counterparts.