134 resultados para Elliptic Variational Inequatilies
Resumo:
Cavitation has been observed in the trailing vortex system of an elliptic planform hydrofoil. A complex dependence on Reynolds number and gas content is noted at inception. Some of the observations can be related to tension effects associated with the lack of sufficiently large-sized nuclei. Inception measurements are compared with estimates of pressure in the vortex obtained from LDV measurements of velocity within the vortex. It is concluded that a complete correlation is not possible without knowledge of the fluctuating levels of pressure in tip-vortex flows. When cavitation is fully developed, the observed tip-vortex trajectory shows a surprising lack of dependence on any of the physical parameters varied, such as angle of attack, Reynolds number, cavitation number, and dissolved gas content.
Resumo:
New methods involving the manipulation of fundamental wavefronts (e.g., plane and spherical) with simple optical components such as pinholes and spherical lenses have been developed for the fabrication of elliptic, hyperbolic and conical holographic zone plates. Also parabolic zone plates by holographic techniques have been obtained for the first time. The performance behaviour of these zone plates has been studied. Further a phenomenological explanation is offered for the observed improved fringe contrast obtained with a spherical reference wave.
Resumo:
We study a one-dimensional version of the Kitaev model on a ring of size N, in which there is a spin S > 1/2 on each site and the Hamiltonian is J Sigma(nSnSn+1y)-S-x. The cases where S is integer and half-odd integer are qualitatively different. We show that there is a Z(2)-valued conserved quantity W-n for each bond (n, n + 1) of the system. For integer S, the Hilbert space can be decomposed into 2N sectors, of unequal sizes. The number of states in most of the sectors grows as d(N), where d depends on the sector. The largest sector contains the ground state, and for this sector, for S=1, d=(root 5+1)/2. We carry out exact diagonalization for small systems. The extrapolation of our results to large N indicates that the energy gap remains finite in this limit. In the ground-state sector, the system can be mapped to a spin-1/2 model. We develop variational wave functions to study the lowest energy states in the ground state and other sectors. The first excited state of the system is the lowest energy state of a different sector and we estimate its excitation energy. We consider a more general Hamiltonian, adding a term lambda Sigma W-n(n), and show that this has gapless excitations in the range lambda(c)(1)<=lambda <=lambda(c)(2). We use the variational wave functions to study how the ground-state energy and the defect density vary near the two critical points lambda(c)(1) and lambda(c)(2).
Resumo:
We present a biquadratic Lagrangian plate bending element with consistent fields for the constrained transverse shear strain functions. A technique involving expansion of the strain interpolations in terms of Legendre polynomials is used to redistribute the kinematically derived shear strain fields so that the field-consistent forms (i.e. avoiding locking) are also variationally correct (i.e. do not violate the variational norms). Also, a rational method of isoparametric Jacobian transformation is incorporated so that the constrained covariant shear strain fields are always consistent in whatever general quadrilateral form the element may take. Finally the element is compared with another formulation which was recently published. The element is subjected to several robust bench mark tests and is found to pass all the tests efficiently.
Resumo:
Time-dependent models of collisionless stellar systems with harmonic potentials allowing for an essentially exact analytic description have recently been described. These include oscillating spheres and spheroids. This paper extends the analysis to time-dependent elliptic discs. Although restricted to two space dimensions, the systems are richer in that their parameters form a 10-dimensional phase space (in contrast to six for the earlier models). Apart from total energy and angular momentum, two additional conserved quantities emerge naturally. These can be chosen as the areas of extremal sections of the ellipsoidal region of phase space occupied by the system (their product gives the conserved volume). The present paper describes the construction of these models. An application to a tidal encounter is given which allows one to go beyond the impulse approximation and demonstrates the effects of rotation of the perturbed system on energy and angular-momentum transfer. The angular-momentum transfer is shown to scale inversely as the cube of the encounter velocity for an initial configuration of the perturbed galaxy with zero quadrupole moment.
Resumo:
A spectral method that obtains the soliton and periodic solutions to the nonlinear wave equation is presented. The results show that the nonlinear group velocity is a function of the frequency shift as well as of the soliton power. When the frequency shift is a function of time, a solution in terms of the Jacobian elliptic function is obtained. This solution is periodic in nature, and, to generate such an optical pulse train, one must simultaneously amplitude- and frequency-modulate the optical carrier. Finally, we extend the method to include the effect of self-steepening.
Resumo:
The catalytic conversion of adenosine triphosphate (ATP) and adenosine monophosphate (AMP) to adenosine diphosphate (ADP) by adenylate kinase (ADK) involves large amplitude, ligand induced domain motions, involving the opening and the closing of ATP binding domain (LID) and AMP binding domain (NMP) domains, during the repeated catalytic cycle. We discover and analyze an interesting dynamical coupling between the motion of the two domains during the opening, using large scale atomistic molecular dynamics trajectory analysis, covariance analysis, and multidimensional free energy calculations with explicit water. Initially, the LID domain must open by a certain amount before the NMP domain can begin to open. Dynamical correlation map shows interesting cross-peak between LID and NMP domain which suggests the presence of correlated motion between them. This is also reflected in our calculated two-dimensional free energy surface contour diagram which has an interesting elliptic shape, revealing a strong correlation between the opening of the LID domain and that of the NMP domain. Our free energy surface of the LID domain motion is rugged due to interaction with water and the signature of ruggedness is evident in the observed root mean square deviation variation and its fluctuation time correlation functions. We develop a correlated dynamical disorder-type theoretical model to explain the observed dynamic coupling between the motion of the two domains in ADK. Our model correctly reproduces several features of the cross-correlation observed in simulations. (C) 2011 American Institute of Physics. doi:10.1063/1.3516588]
Resumo:
An asymptotically correct analysis is developed for Macro Fiber Composite unit cell using Variational Asymptotic Method (VAM). VAM splits the 3D nonlinear problem into two parts: A 1D nonlinear problem along the length of the fiber and a linear 2D cross-sectional problem. Closed form solutions are obtained for the 2D problem which are in terms of 1D parameters.
Resumo:
Several of the most interesting quantum effects can or could be observed in nanoscopic systems. For example, the effect of strong correlations between electrons and of quantum interference can be measured in transport experiments through quantum dots, wires, individual molecules and rings formed by large molecules or arrays of quantum dots. In addition, quantum coherence and entanglement can be clearly observed in quantum corrals. In this paper we present calculations of transport properties through Aharonov-Bohm strongly correlated rings where the characteristic phenomenon of charge-spin separation is clearly observed. Additionally quantum interference effects show up in transport through pi-conjugated annulene molecules producing important effects on the conductance for different source-drain configurations, leading to the possibility of an interesting switching effect. Finally, elliptic quantum corrals offer an ideal system to study quantum entanglement due to their focalizing properties. Because of an enhanced interaction between impurities localized at the foci, these systems also show interesting quantum dynamical behaviour and offer a challenging scenario for quantum information experiments.
Resumo:
In this paper, we present a novel analytical formulation for the coupled partial differential equations governing electrostatically actuated constrained elastic structures of inhomogeneous material composition. We also present a computationally efficient numerical framework for solving the coupled equations over a reference domain with a fixed finite-element mesh. This serves two purposes: (i) a series of problems with varying geometries and piece-wise homogeneous and/or inhomogeneous material distribution can be solved with a single pre-processing step, (ii) topology optimization methods can be easily implemented by interpolating the material at each point in the reference domain from a void to a dielectric or a conductor. This is attained by considering the steady-state electrical current conduction equation with a `leaky capacitor' model instead of the usual electrostatic equation. This formulation is amenable for both static and transient problems in the elastic domain coupled with the quasi-electrostatic electric field. The procedure is numerically implemented on the COMSOL Multiphysics (R) platform using the weak variational form of the governing equations. Examples have been presented to show the accuracy and versatility of the scheme. The accuracy of the scheme is validated for the special case of piece-wise homogeneous material in the limit of the leaky-capacitor model approaching the ideal case.
Resumo:
This paper deals with the evaluation of the component-laminate load-carrying capacity, i.e., to calculate the loads that cause the failure of the individual layers and the component-laminate as a whole in four-bar mechanism. The component-laminate load-carrying capacity is evaluated using the Tsai-Wu-Hahn failure criterion for various layups. The reserve factor of each ply in the component-laminate is calculated by using the maximum resultant force and the maximum resultant moment occurring at different time steps at the joints of the mechanism. Here, all component bars of the mechanism are made of fiber reinforced laminates and have thin rectangular cross-sections. They could, in general, be pre-twisted and/or possess initial curvature, either by design or by defect. They are linked to each other by means of revolute joints. We restrict ourselves to linear materials with small strains within each elastic body (beam). Each component of the mechanism is modeled as a beam based on geometrically nonlinear 3-D elasticity theory. The component problems are thus split into 2-D analyses of reference beam cross-sections and nonlinear 1-D analyses along the three beam reference curves. For the thin rectangular cross-sections considered here, the 2-D cross-sectional nonlinearity is also overwhelming. This can be perceived from the fact that such sections constitute a limiting case between thin-walled open and closed sections, thus inviting the nonlinear phenomena observed in both. The strong elastic couplings of anisotropic composite laminates complicate the model further. However, a powerful mathematical tool called the Variational Asymptotic Method (VAM) not only enables such a dimensional reduction, but also provides asymptotically correct analytical solutions to the nonlinear cross-sectional analysis. Such closed-form solutions are used here in conjunction with numerical techniques for the rest of the problem to predict more quickly and accurately than would otherwise be possible. Local 3-D stress, strain and displacement fields for representative sections in the component-bars are recovered, based on the stress resultants from the 1-D global beam analysis. A numerical example is presented which illustrates the failure of each component-laminate and the mechanism as a whole.
Resumo:
In this study, variational principle is used for dynamic modeling of an Ionic Polymer Metal Composite (IPMC) flapping wing. The IPMC is an Electro-active Polymer (EAP) which is emerging as a useful smart material for `artificial muscle' applications. Dynamic characteristics of IPMC flapping wings having the same size as the actual wings of three different dragonfly species Aeshna Multicolor, Anax Parthenope Julius and Sympetrum Frequens are analyzed using numerical simulations. An unsteady aerodynamic model is used to obtain the aerodynamic forces. A comparative study of the performances of three IPMC flapping wings is conducted. Among the three species, it is found that thrust force produced by the IPMC flapping wing of the same size as Anax Parthenope Julius wing is maximum. Lift force produced by the IPMC wing of the same size as Sympetrum Frequens wing is maximum and the wing is suitable for low speed flight. The numerical results in this paper show that dragonfly inspired IPMC flapping wings are a viable contender for insect scale flapping wing micro air vehicles.
Resumo:
conventionally, solid finite elements have been looked upon as just generalizations of two-dimensional finite elements. In this article we trace their development starting from the days of their inception. Keeping in tune with our perceptions on developing finite elements, without taking recourse to any extra variational techniques, we discuss a few of the techniques which have been applied to solid finite elements. Finally we critically examine our own work on formulating solid finite elements based on the solutions to the Navier equations.
Resumo:
Displaced squeezed states are proposed as variational ground states for phonons (Bose fields) coupled to two-level systems (spin systems). We have investigated the zero-temperature phase diagram for the localization-delocalization transition of a tunneling particle interacting with an Ohmic heat bath. Our results are compared with known existing approximate treatments. A modified phase diagram using the displaced squeezed state is presented.
Resumo:
Anomalous X-ray scattering (AXS) has been applied to study the structure of amorphous platinum disulfide, Pt1-xS2, prepared by the precipitation process. The local atomic arrangement in amorphous Pt1-xS2 was determined by the least-squares variational method so as to reproduce the experimental differential interference function at the Pt L(III) absorption edge by the AXS method as well as the ordinary interference function by MoK alpha. The structural unit in amorphous Pt1-xS2 is found to be a PtS6 octahedron, similar to that in crystalline PtS2. These octahedra share both their corners and edges, while only edge-sharing linkages occur in crystalline PtS2.