82 resultados para Electroweak symmetry breaking.
Resumo:
We show that under gravity the effective masses for neutrino and antineutrino are different which opens a possible window of neutrino-antineutrino oscillation even if the rest masses of the corresponding eigenstates are same. This is due to CPT violation and possible to demonstrate if the neutrino mass eigenstates are expressed as a combination of neutrino and antineutrino eigenstates, as of the neutral kaon system, with the plausible breaking of lepton number conservation. In early universe, in presence of various lepton number violating processes, this oscillation might lead to neutrino-antineutrino asymmetry which resulted baryogenesis from the B-L symmetry by electro-weak sphaleron processes. On the other hand, for Majorana neutrinos, this oscillation is expected to affect the inner edge of neutrino dominated accretion disks around a compact object by influencing the neutrino sphere which controls the accretion dynamics, and then the related type-II supernova evolution and the r-process nucleosynthesis.
Resumo:
Study of symmetric or repeating patterns in scalar fields is important in scientific data analysis because it gives deep insights into the properties of the underlying phenomenon. Though geometric symmetry has been well studied within areas like shape processing, identifying symmetry in scalar fields has remained largely unexplored due to the high computational cost of the associated algorithms. We propose a computationally efficient algorithm for detecting symmetric patterns in a scalar field distribution by analysing the topology of level sets of the scalar field. Our algorithm computes the contour tree of a given scalar field and identifies subtrees that are similar. We define a robust similarity measure for comparing subtrees of the contour tree and use it to group similar subtrees together. Regions of the domain corresponding to subtrees that belong to a common group are extracted and reported to be symmetric. Identifying symmetry in scalar fields finds applications in visualization, data exploration, and feature detection. We describe two applications in detail: symmetry-aware transfer function design and symmetry-aware isosurface extraction.
Resumo:
The concept of symmetry for passive, one-dimensional dynamical systems is well understood in terms of the impedance matrix, or alternatively, the mobility matrix. In the past two decades, however, it has been established that the transfer matrix method is ideally suited for the analysis and synthesis of such systems. In this paper an investigatiob is described of what symmetry means in terms of the transfer matrix parameters of an passive element or a set of elements. One-dimensional flexural systems with 4 × 4 transfer matrices as well as acoustical and mechanical systems characterized by 2 × 2 transfer matrices are considered. It is shown that the transfer matrix of a symmetrical system, defined with respect to symmetrically oriented state variables, is involutory, and that a physically symmetrical system may not necessarily be functionally or dynamically symmetrical.
Resumo:
One of the long standing problems in quantum chemistry had been the inability to exploit full spatial and spin symmetry of an electronic Hamiltonian belonging to a non-Abelian point group. Here, we present a general technique which can utilize all the symmetries of an electronic (magnetic) Hamiltonian to obtain its full eigenvalue spectrum. This is a hybrid method based on Valence Bond basis and the basis of constant z-component of the total spin. This technique is applicable to systems with any point group symmetry and is easy to implement on a computer. We illustrate the power of the method by applying it to a model icosahedral half-filled electronic system. This model spans a huge Hilbert space (dimension 1,778,966) and in the largest non-Abelian point group. The C60 molecule has this symmetry and hence our calculation throw light on the higher energy excited states of the bucky ball. This method can also be utilized to study finite temperature properties of strongly correlated systems within an exact diagonalization approach. (C) 2011 Wiley Periodicals, Inc. Int J Quantum Chem, 2012
Resumo:
A strong electron-phonon interaction which limits the electronic mobility of semiconductors can also have significant effects on phonon frequencies. The latter is the key to the use of Raman spectroscopy for nondestructive characterization of doping in graphene-based devices. Using in situ Raman scattering from a single-layer MoS2 electrochemically top-gated field-effect transistor (FET), we show softening and broadening of the A(1g) phonon with electron doping, whereas the other Raman-active E-2g(1) mode remains essentially inert. Confirming these results with first-principles density functional theory based calculations, we use group theoretical arguments to explain why the A(1g) mode specifically exhibits a strong sensitivity to electron doping. Our work opens up the use of Raman spectroscopy in probing the level of doping in single-layer MoS2-based FETs, which have a high on-off ratio and are of technological significance.
Resumo:
In graphene, the valleys represent spinlike quantities and can act as a physical resource in valley-based electronics to produce novel quantum computation schemes. Here we demonstrate a direct route to tune and read the valley quantum states of disordered graphene by measuring the mesoscopic conductance fluctuations. We show that the conductance fluctuations in graphene at low temperatures are reduced by a factor of 4 when valley triplet states are gapped in the presence of short-range potential scatterers at high carrier densities. We also show that this implies a gate tunable universal symmetry class that outlines a fundamental feature arising from graphene's unique crystal structure.
Resumo:
We revisit the issue of considering stochasticity of Grassmannian coordinates in N = 1 superspace, which was analyzed previously by Kobakhidze et al. In this stochastic supersymmetry (SUSY) framework, the soft SUSY breaking terms of the minimal supersymmetric Standard Model (MSSM) such as the bilinear Higgs mixing, trilinear coupling, as well as the gaugino mass parameters are all proportional to a single mass parameter xi, a measure of supersymmetry breaking arising out of stochasticity. While a nonvanishing trilinear coupling at the high scale is a natural outcome of the framework, a favorable signature for obtaining the lighter Higgs boson mass m(h) at 125 GeV, the model produces tachyonic sleptons or staus turning to be too light. The previous analyses took Lambda, the scale at which input parameters are given, to be larger than the gauge coupling unification scale M-G in order to generate acceptable scalar masses radiatively at the electroweak scale. Still, this was inadequate for obtaining m(h) at 125 GeV. We find that Higgs at 125 GeV is highly achievable, provided we are ready to accommodate a nonvanishing scalar mass soft SUSY breaking term similar to what is done in minimal anomaly mediated SUSY breaking (AMSB) in contrast to a pure AMSB setup. Thus, the model can easily accommodate Higgs data, LHC limits of squark masses, WMAP data for dark matter relic density, flavor physics constraints, and XENON100 data. In contrast to the previous analyses, we consider Lambda = M-G, thus avoiding any ambiguities of a post-grand unified theory physics. The idea of stochastic superspace can easily be generalized to various scenarios beyond the MSSM. DOI: 10.1103/PhysRevD.87.035022
Resumo:
In a quantum system, there may be many density matrices associated with a state on an algebra of observables. For each density matrix, one can compute its entropy. These are, in general, different. Therefore, one reaches the remarkable possibility that there may be many entropies for a given state R. Sorkin (private communication)]. This ambiguity in entropy can often be traced to a gauge symmetry emergent from the nontrivial topological character of the configuration space of the underlying system. It can also happen in finite-dimensional matrix models. In the present work, we discuss this entropy ambiguity and its consequences for an ethylene molecule. This is a very simple and well-known system, where these notions can be put to tests. Of particular interest in this discussion is the fact that the change of the density matrix with the corresponding entropy increase drives the system towards the maximally disordered state with maximum entropy, where Boltzman's formula applies. Besides its intrinsic conceptual interest, the simplicity of this model can serve as an introduction to a similar discussion of systems such as colored monopoles and the breaking of color symmetry.
Resumo:
Visualizing symmetric patterns in the data often helps the domain scientists make important observations and gain insights about the underlying experiment. Detecting symmetry in scalar fields is a nascent area of research and existing methods that detect symmetry are either not robust in the presence of noise or computationally costly. We propose a data structure called the augmented extremum graph and use it to design a novel symmetry detection method based on robust estimation of distances. The augmented extremum graph captures both topological and geometric information of the scalar field and enables robust and computationally efficient detection of symmetry. We apply the proposed method to detect symmetries in cryo-electron microscopy datasets and the experiments demonstrate that the algorithm is capable of detecting symmetry even in the presence of significant noise. We describe novel applications that use the detected symmetry to enhance visualization of scalar field data and facilitate their exploration.
Resumo:
We revisit the constraints on the parameter space of the Minimal Supersymmetric Standard Model (MSSM), from charge and color breaking minima in the light of information on the Higgs from the LHC so far. We study the behavior of the scalar potential keeping two light sfermion fields along with the Higgs in the pMSSM framework and analyze the stability of the vacuum. We find that for lightest stops a parts per thousand(2) 1 TeV and small mu a parts per thousand(2) 500 GeV, the absolute stability of the potential can be attained only for . The bounds become stronger for larger values of the mu parameter. Note that this is approximately the value of Xt which maximizes the Higgs mass. Our bounds on the low scale MSSM parameters are more stringent than those reported earlier in literature. We reanalyze the stau sector as well, keeping both staus. We study the connections between the observed Higgs rates and vacuum (meta)stability. We show how a precision study of the ratio of signal strengths, (mu (gamma gamma) /mu (ZZ) ) can shed further light.
Resumo:
The paper presents a multiscale method for crack propagation. The coarse region is modelled by the differential reproducing kernel particle method. Fracture in the coarse scale region is modelled with the Phantom node method. A molecular statics approach is employed in the fine scale where crack propagation is modelled naturally by breaking of bonds. The triangular lattice corresponds to the lattice structure of the (111) plane of an FCC crystal in the fine scale region. The Lennard-Jones potential is used to model the atom-atom interactions. The coupling between the coarse scale and fine scale is realized through ghost atoms. The ghost atom positions are interpolated from the coarse scale solution and enforced as boundary conditions on the fine scale. The fine scale region is adaptively refined and coarsened as the crack propagates. The centro symmetry parameter is used to detect the crack tip location. The method is implemented in two dimensions. The results are compared to pure atomistic simulations and show excellent agreement. (C) 2014 Elsevier B. V. All rights reserved.
Resumo:
The complexity in visualizing volumetric data often limits the scope of direct exploration of scalar fields. Isocontour extraction is a popular method for exploring scalar fields because of its simplicity in presenting features in the data. In this paper, we present a novel representation of contours with the aim of studying the similarity relationship between the contours. The representation maps contours to points in a high-dimensional transformation-invariant descriptor space. We leverage the power of this representation to design a clustering based algorithm for detecting symmetric regions in a scalar field. Symmetry detection is a challenging problem because it demands both segmentation of the data and identification of transformation invariant segments. While the former task can be addressed using topological analysis of scalar fields, the latter requires geometry based solutions. Our approach combines the two by utilizing the contour tree for segmenting the data and the descriptor space for determining transformation invariance. We discuss two applications, query driven exploration and asymmetry visualization, that demonstrate the effectiveness of the approach.
Resumo:
The hexamethylenetetramine (HMT) framework displays interesting stereoelectronic interactions of the anomeric type. In the highly symmetrical parent system, the nitrogen centres act as both donors and acceptors. Protonation lowers symmetry and also leads to an enhancement of the anomeric interaction around the protonated centre. X-ray diffraction crystal structures of four derivatives of HMT - with succinic, (DL)-malic, phthalic and 4-hydroxybenzoic acids - reveal significant trends. (The first three form well-defined salts, 4-hydroxybenzoic acid forming a co-crystalline compound.) Each molecular structure is essentially characterised by a major anomeric interaction involving the protonated centre as acceptor. In two cases (succinic and 4-hydroxybenzoic), secondary protonation leads to a weaker anomeric interaction site that apparently competes with the dominant one. Bond length changes indicate that the anomeric interaction decreases as malic > phthalic > succinic > 4-hydroxybenzoic, which correlates with the degree of proton transfer to the nitrogen centre. Along with other bond length and angle changes, the results offer insight into the applicability of the antiperiplanar lone pair hypothesis (ALPH) in a rigid system. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
The hexamethylenetetramine (HMT) framework displays interesting stereoelectronic interactions of the anomeric type. In the highly symmetrical parent system, the nitrogen centres act as both donors and acceptors. Protonation lowers symmetry and also leads to an enhancement of the anomeric interaction around the protonated centre. X-ray diffraction crystal structures of four derivatives of HMT - with succinic, (DL)-malic, phthalic and 4-hydroxybenzoic acids - reveal significant trends. (The first three form well-defined salts, 4-hydroxybenzoic acid forming a co-crystalline compound.) Each molecular structure is essentially characterised by a major anomeric interaction involving the protonated centre as acceptor. In two cases (succinic and 4-hydroxybenzoic), secondary protonation leads to a weaker anomeric interaction site that apparently competes with the dominant one. Bond length changes indicate that the anomeric interaction decreases as malic > phthalic > succinic > 4-hydroxybenzoic, which correlates with the degree of proton transfer to the nitrogen centre. Along with other bond length and angle changes, the results offer insight into the applicability of the antiperiplanar lone pair hypothesis (ALPH) in a rigid system. (C) 2014 Elsevier B.V. All rights reserved.