154 resultados para Electronic word-of-mouth
Resumo:
The electronic structure of quasi-two-dimensional monophosphate tungsten bronze, P4W12O44, has been investigated by high-resolution angle-resolved photoemission spectroscopy and density functional theoretical calculations. Experimental electron-like bands around Gamma point and Fermi surfaces have similar shapes as predicted by calculations. Fermi surface mapping at different temperatures shows a depletion of density of states at low temperature in certain flat portions of the Fermi surfaces. These flat portions of the Fermi surfaces satisfy the partial nesting condition with incommensurate nesting vectors q(1) and q(2), which leads to the formation of charge density waves in this phosphate tungsten bronzes. The setting up of charge density wave in these bronzes can well explain the anomaly observed in its transport properties. Copyright (C) EPLA, 2014
Resumo:
The electronic structure of the (La0.8Sr0.2)(0.98)Mn1-xCrxO3 model series (x = 0, 0.05, or 0.1) was measured using soft X-ray synchrotron radiation at room and elevated temperature. O K-edge near-edge X-ray absorption fine structure (NEXAFS) spectra showed that low-level chromium substitution of (La, Sr)MnO3 resulted in lowered hybridisation between O 2p orbitals and M 3d and M 4sp valance orbitals. Mn L-3-edge resonant photoemission spectroscopy measurements indicated lowered Mn 3d-O 2p hybridisation with chromium substitution. Deconvolution of O K-edge NEXAFS spectra took into account the effects of exchange and crystal field splitting and included a novel approach whereby the pre-peak region was described using the nominally filled t(2g) up arrow state. 10% chromium substitution resulted in a 0.17 eV lowering in the energy of the t(2g) up arrow state, which appears to provide an explanation for the 0.15 eV rise in activation energy for the oxygen reduction reaction, while decreased overlap between hybrid O 2p-Mn 3d states was in qualitative agreement with lowered electronic conductivity. An orbital-level understanding of the thermodynamically predicted solid oxide fuel cell cathode poisoning mechanism involving low-level chromium substitution on the B-site of (La, Sr)MnO3 is presented. (C) 2015 AIP Publishing LLC.
Resumo:
The electronic structure of yttrium-doped Silicon Carbide Nanotubes has been theoretically investigated using first principles density functional theory (DFT). Yttrium atom is bonded strongly on the surface of the nanotube with a binding energy of 2.37 eV and prefers to stay on the hollow site at a distance of around 2.25 angstrom from the tube. The semi-conducting nanotube with chirality (4, 4) becomes half mettalic with a magnetic moment of 1.0 mu(B) due to influence of Y atom on the surface. There is strong hybridization between d orbital of Y with p orbital of Si and C causing a charge transfer from d orbital of the Y atom to the tube. The Fermi level is shifted towards higher energy with finite Density of States for only upspin channel making the system half metallic and magnetic which may have application in spintronic devices.
Resumo:
Topological crystalline insulators (TCIs) are a new quantum state of matter in which linearly dispersed metallic surface states are protected by crystal mirror symmetry. Owing to its vanishingly small bulk band gap, a TCI like Pb0.6Sn0.4Te has poor thermoelectric properties. Breaking of crystal symmetry can widen the band gap of TCI. While breaking of mirror symmetry in a TCI has been mostly explored by various physical perturbation techniques, chemical doping, which may also alter the electronic structure of TCI by perturbing the local mirror symmetry, has not yet been explored. Herein, we demonstrate that Na doping in Pb0.6Sn0.4Te locally breaks the crystal symmetry and opens up a bulk electronic band gap, which is confirmed by direct electronic absorption spectroscopy and electronic structure calculations. Na doping in Pb0.6Sn0.4Te increases p-type carrier concentration and suppresses the bipolar conduction (by widening the band gap), which collectively gives rise to a promising zT of 1 at 856 K for Pb0.58Sn0.40Na0.02Te. Breaking of crystal symmetry by chemical doping widens the bulk band gap in TCI, which uncovers a route to improve TCI for thermoelectric applications.
Resumo:
Controlled variation of the electronic properties of. two-dimensional (2D) materials by applying strain has emerged as a promising way to design materials for customized applications. Using density functional theory (DFT) calculations, we show that while the electronic structure and indirect band gap of SnS2 do not change significantly with the number of layers, they can be reversibly tuned by applying biaxial tensile (BT), biaxial compressive (BC), and normal compressive (NC) strains. Mono to multilayered SnS2 exhibit a reversible semiconductor to metal (S-M) transition with applied strain. For bilayer (2L) SnS2, the S-Mtransition occurs at the strain values of 17%,-26%, and -24% under BT, BC, and NC strains, respectively. Due to weaker interlayer coupling, the critical strain value required to achieve the S-Mtransition in SnS2 under NC strain is much higher than for MoS2. From a stability viewpoint, SnS2 becomes unstable at very low strain values on applying BC (-6.5%) and BT strains (4.9%), while it is stable even up to the transition point (-24%) in the case of NC strain. In addition to the reversible tuning of the electronic properties of SnS2, we also show tunability in the phononic band gap of SnS2, which increases with applied NC strain. This gap increases three times faster than for MoS2. This simultaneous tunability of SnS2 at the electronic and phononic levels with strain, makes it a potential candidate in field effect transistors (FETs) and sensors as well as frequency filter applications.
Resumo:
C60Br8, unlike C60Br6 and C60Cl6, forms a solid charge-transfer compound with tetrathiafulvalene (TTF), the composition being C60Br8(TTF)(8). The unique complex-forming property of C60Br8 can be understood on the basis of the electronic structures of the halogenated derivatives of C-60. Molecular orbital calculations show that the low LUMO energy of C60Br8 compared with the other halogen derivatives renders the formation of the complex with TTF favourable, the four virtual LUMOs being able to accept 8 electrons. The Raman spectrum of C60Br8(TTF)(8) shows a marked softening of the bands (-46 cm(-1) on average) with respect to C60Br8 suggesting that indeed 8 electrons are transferred per C60Br8 molecule, one from each TTF molecule. The complex is weakly paramagnetic and shows a magnetic transition around 80 K.
Resumo:
Sr2FeMoO6 oxides exhibit a half-metallic ferromagnetic (HM-FM) ground state and peculiar magnetic and magnetotransport properties, which are interesting for applications in the emerging field of spintronics and attractive for fundamental research in the field of heavily correlated electron systems. Sr2FeWO6 is an insulator with an antiferromagnetic (I-AFM) ground state. The solid solutions Sr2FeMoxW1-xO6 also have peculiar properties-W doping enhances chemical order which allows stabilization of the HM-FM state; as the W content exceeds a certain value a metal to insulator transition (MIT) occurs. The role of W in determining the physical properties of Sr2FeMoxW1-xO6 systems has been a matter of intense investigation. This work deals with the problem of the structural and electronic changes related to the MIT from a local perspective by means of x-ray absorption spectroscopy (XAS). This technique allows one to probe in detail the local structure and electronic modifications around selected absorber ions (W, Mo, Fe and Sr in our case). The results of XAS analysis in the whole composition range (0 <= x <= 1), in the near edge (XANES) and extended (EXAFS) regions, demonstrate an abrupt change of the local structure around the Fe and Mo sites at the critical composition, x(c). This change represents the microstructural counterpart associated with the MIT. Conversely, the local structure and electronic configuration of W ions remain unaltered in the whole composition range, suggesting indirect participation of W in the MIT.
Resumo:
A pre-requisite for the elucidation of the mechanism of action of aspirin-like drugs, which are believed to exert their pharmacological effects through the inhibition of prostaglandin biosynthesis, is an understanding of their molecular geometry, the non-covalent interactions they are likely to be involved in, and the geometrical and the electronic consequences of such interactions. This has been sought to be achieved through the x-ray analysis of these drug molecules and their crystalline complexes with other suitable molecules. The results obtained from such studies have been discussed in terms of specific typical examples. For instance, antipyrine can form metal and hydrogen-bonded complexes; phenylbutazone can form ionic complexes with basic molecules. Complex formation is accompanied by characteristic changes in the molecular geometry and the electronic structure in both the cases. The results obtained so far appear to indicate that the important common invariant structural features of the fenamates, deduced from crystal structures, are retained even when complexation takes place.
Resumo:
The interactions of mesotetraphenyl porphyrin and its metallo derivatives with 2,4,5,7-tetra nitrofluorenone have been studied using spectroscopic methods. The association constants (K) for 1:1 complexes in Ch2Cl2Cl2 follow the order Pd+2>Co+2> Cu+2>VO+2>Ni+2>Zn+2. The values of K are accounted in terms of stereochemistry of MTPPs and the electronic configuration of the metal ions. The magnitude and direction of the proton NMR shifts of the acceptor and donor in the complexes and their ESR parameter furnish information as to the possible structures of these complexes in solution.
Resumo:
The interactions of metallo derivatives of macrocyclic tetrapyrrole pigments, pheophytin a (pheo), phthalocyanin (phth), and tetraphenylporphyrin (TPP) with sym-trinitrobenzene (TNB) have been studied with use of spectroscopic methods. These macrocyles form 1:l molecular complexw with the acceptor. The association constants (K) for the interactions follow the decreasing order of binding as pheo > phth > TPP. The divalent metal ions influence the values of K for the various metallo TPP derivatives, and the relative order of stabilities decrease as Co > Cu = VO > Ni > Zn. The stereochemistry of M(TPP) and the electronic configuration of the metal ions are shown to contribute to the magnitudes of K. The acceptor strongly quenches the fluorescence of the metallo macrocycles, and the quenching constant decreases as pheo > phth > TPP. The formation of exciplexes is postulated on the basis of the rate of bimolecular quenching constants and solvent effects.
Resumo:
The three isomeric cresols were subjected to the all-valence-electron CNDO/2 andPPP-CI calculations. Results from this study were used: (i) to compare the electronic structures of these isomers vis-Ã-vis parent compounds-phenol and toluene, (ii) to obtain a quantitative picture of their chemical reactivities and electronic absorption spectra. Using the sgr-core charges derived from CNDO/2 calculations and subsequently revising the valence-state ionisation potential and one-center-two-electron repulsion integrals, thePPP-CI calculations were performed on the title compounds according toNishimoto andForster scheme. In these calculations the pseudo-unsaturated nature of the methyl group has been given due consideration. In spectral assignment, compared to the conventionalPPP approach, the CNDO/2-basedPPP-CI method gave a better agreement with the experimental data.
Resumo:
The electronic structure of group II-VI semiconductors in the stable wurtzite form is analyzed using state-of-the-art ab initio approaches to extract a simple and chemically transparent tight-binding model. This model can be used to understand the variation in the bandgap with size, for nanoclusters of these compounds. Results complement similar information already available for same systems in the zinc blende structure. A comparison with all available experimental data on quantum size effects in group II-VI semiconductor nanoclusters establishes a remarkable agreement between theory and experiment in both structure types, thereby verifying the predictive ability of our approach. The significant dependence of the quantum size effect on the structure type suggests that the experimental bandgap change at a given size compared to the bulk bandgap, may be used to indicate the structural form of the nanoclusters, particularly in the small size limit, where broadening of diffraction features often make it difficult to unambiguously determine the structure.
Resumo:
The application of the CNDO and PPP-CI methods to N,N-dimethyl dithiocarbamate, O-methyl dithiocarbonate (methyl xanthate) and methyl trithiocarbonate ions for the elucidation of electronic structure and electronic spectra is described. The CNDO/2 calculations have been used to obtain the one centre core integrals of the ionic compounds required in calculating the pi electronic spectra of these molecules using the PPP method. The calculated spectra are in good agreement with the experiment. The atomic charge densities determined for alkyl xanthate, dithiocarbamate and trithiocarbonate ions support the earlier qualitative predictions regarding electronic structure from spectroscopic and other studies.
Resumo:
An indigenous electron energy loss spectrometer has been designed and fabricated for the study of free molecules. The spectrometer enables the recording of low-resolution electronic spectra of molecules inthe vapour phase with ready access to the vacuum ultraviolet region. Electron energy loss spectra of aliphatic alcohols and carbonyl compounds as wellas of benzene derivatives have been recorded with the indigenous spectrometer and the electronic transitions in these molecules discussed.
Resumo:
The interactions of mesotetraphenyl porphyrin and its metallo derivatives with 2,4,5,7-tetra nitrofluorenone have been studied using spectroscopic methods. The association constants (K) for 1:1 complexes in Ch2Cl2Cl2 follow the order Pd+2>Co+2> Cu+2>VO+2>Ni+2>Zn+2. The values of K are accounted in terms of stereochemistry of MTPPs and the electronic configuration of the metal ions. The magnitude and direction of the proton NMR shifts of the acceptor and donor in the complexes and their ESR parameter furnish information as to the possible structures of these complexes in solution.