94 resultados para Electrochemical capacitance spectroscopy


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Present work describes the characterization of commercially available ZnO and its electrochemical investigation of dopamine in the presence of ascorbic acid. ZnO was characterized by powder XRD, UV-visible absorption, fluorescence, infrared spectroscopy and scanning electron microscopy. The carbon paste electrode was modified with ZnO and ZnO/polyglycine for further electrochemical investigation of dopamine. The modified electrode shows good electrocatalytic activity towards the detection of dopamine with a reduction in overpotential. The ZnO/polyglycine modified carbon paste electrode (CPE/ZnO/Pgl) shows excellent electrochemical enhancement of peak currents for both dopamine (DA) and ascorbic acid (AA) and for simultaneous detection of DA in the presence of high concentrations of AA with 0.214 V oxidation peak potential differences between them at pH 7.4. From the scan rate variation and concentration, the oxidation of DA and AA was found to be adsorption-controlled. The use of CPE/ZnO/Pgl is demonstrated for the detection of DA in blood serum and injection samples. This journal is © The Royal Society of Chemistry 2012.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Titanium carbide (TiC) is an electrically conducting material with favorable electrochemical properties. In the present studies, carbon-doped TiO2 (C-TiO2) has been synthesized from TiC particles, as well as TiC films coated on stainless steel substrate via thermal annealing under various conditions. Several C-TiO2 substrates are synthesized by varying experimental, conditions and characterized by UV-visible spectroscopy, photoluminescence, X-ray diffraction and X-ray photoelectron spectroscopic techniques. C-TiO2 in the dry state (in powder form as well as in film form) is subsequently used as a substrate for enhancing Raman signals corresponding to 4-mercaptobenzoic acid and 4-nitrothiophenol by utilizing chemical enhancement based on charge-transfer interactions. Carbon, a nonmetal dopant in TiO2, improves the intensities of Raman signals, compared, to undoped TiO2. Significant dependence of Raman intensity on carbon doping is observed. Ameliorated performance obtained using C-TiO2 is attributed to the presence of surface defects that originate due to carbon as a dopant, which, in turn,, triggers charge transfer between TiO2 and analyte. The C-TiO2 substrates are subsequently regenerated for repetitive use by illuminating an analyte-adsorbed substrate with visible light for a period of 5 h.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Lead-Carbon hybrid ultracapacitors (Pb-C HUCs) with flooded, absorbent-glass-mat (AGM) and silica-gel sulphuric acid electrolyte configurations are developed and performance tested. Pb-C HUCs comprise substrate-integrated PbO2 (SI-PbO2) as positive electrodes and high surface-area carbon with graphite-sheet substrate as negative electrodes. The electrode and silica-gel electrolyte materials are characterized by XRD, XPS, SEM, TEM, Rheometry, BET surface area, and FTIR spectroscopy in conjunction with electrochemistry. Electrochemical performance of SI-PbO2 and carbon electrodes is studied using cyclic voltammetry with constant-current charge and discharge techniques by assembling symmetric electrical-double-layer capacitors and hybrid Pb-C HUCs with a dynamic Pb(porous)/PbSO4 reference electrode. The specific capacitance values for 2 V Pb-C HUCs are found to be 166 F/g, 102 F/g and 152 F/g with a faradaic efficiency of 98%, 92% and 88% for flooded, AGM and gel configurations, respectively.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The morphology of nanocrystalline Co3O4 synthesized through microwave irradiation of a solution of a cobalt complex is found to depend reproducibly on the conditions of synthesis and, in particular, on the composition of the solvent used. Despite the rapidity of the process, oriented aggregation occurs under certain conditions, depending on solvent composition. Annealing the oriented samples leads to microstructures with significant porosity, rendering the material suitable as electrodes for electrochemical capacitors. Electrochemical analysis of the oxide samples was carried out in 0.1M Na2SO4 electrolyte vs. Ag/AgCl electrode. A stable specific capacitance of 221 F/g was measured for a meso-porous sample displaying oriented aggregation. Stability of these oxide materials were checked for longer charge-discharge cycling. (C) 2012 The Electrochemical Society. DOI: 10.1149/2.002210jes] All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Carbonaceous nickel oxide powder samples have been synthesized from an adducted nickel beta-ketoester complex used as a ``single source precursor'' through a solution-based microwave-assisted chemical route. Comprehensive analysis of the resulting powder material has been carried out using various characterization techniques. These analysis reveal that, depending on the solvent used, either NiO/C or Ni/NiO/C composites are formed, wherein Ni and/or NiO nanocrystals are enveloped in amorphous carbon. As the components emerge from the same molecular source, the composites are homogeneous on a fine scale, making them promising electrode materials for supercapacitors. Electrochemical capacitive behavior of these oxide composites is studied in a three-electrode configuration. With a specific capacitance of 113 F g(-1), Ni/NiO/C is superior to NiO/C as capacitor electrode material, in 0.1 M Na2SO4 electrolyte. This is confirmed by impedance measurements, which show that charge-transfer resistance and equivalent series resistance are lower in Ni/NiO/C than in NiO/C, presumably because of the presence of metallic nickel in the former. The cyclic voltammograms are nearly rectangular and the electrodes display excellent cyclability in different electrolytes: Na2SO4, KOH and Ca(NO3)(2)center dot 4H(2)O. Specific capacitance as high as 143 F g(-1), is measured in Ca(NO3)(2)center dot 4H(2)O electrolyte.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A composite electrode made up of exfoliated graphite (EG) and diamond was prepared for the electrochemical oxidation of trichloroethylene (TCE). The SEM images of the EG-diamond material showed that diamond powders were dispersed on the surface of EG materials. The N-2 adsorption-desorption isotherm of EG-diamond material resulted in a poor adsorption capability due to the insertion of diamond powders into the porous matrix of EG. Raman spectroscopy revealed the presence of characteristic sp(3) bands of diamond confirming good interaction of diamond with EG. Electrochemical characterisation of EG-diamond in 0.1 M Na2SO4 resulted in an enhanced working potential window. The EG-diamond electrode was employed for the electrochemical oxidation of trichloroethylene (0.2 mM) in a Na2SO4 supporting electrolyte. The EG-diamond, in comparison to the pristine EG electrode, exhibited a higher removal efficiency of 94% (EG was 57%) and faster degradation kinetics of 25.3 x 10(-3) min(-1) showing pseudo first order kinetic behaviour. Under the optimised conditions, 73% total organic content (TOC) removal was achieved after 4 h of electrolysis. The degradation of TCE was also monitored with gas chromatography-mass spectrometry. Dichloroacetic acid (DCAA) was identified as a major intermediate product during the electrochemical oxidation of TCE. The electrochemical degradation of TCE at the EG-diamond electrode represents a cost effective method due to the ease of preparation of EG-diamond composite material without the necessity of diamond activation which is normally achieved through doping.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Highly branched and porous graphene nanosheet synthesized over different substrates as anode for Lithium ion thin film battery. These films synthesized by microwave plasma enhanced chemical vapor deposition at temperature 700 degrees C. Scanning electron microscopy and X-ray photo electron spectroscopy are used to characterize the film surface. It is found that the graphene sheets possess a curled and flower like morphology. Electrochemical performances were evaluated in swezelock type cells versus metallic lithium. A reversible capacity of 520 mAh/g, 450 mAh/g and 637 mAh/g was obtained after 50 cycles when current rate at 23 mu A cm(2) for CuGNS, NiGNS and PtGNS electrodes, respectively. Electrochemical properties of thin film anode were measured at different current rate and gave better cycle life and rate capability. These results indicate that the prepared high quality graphene sheets possess excellent electrochemical performances for lithium storage. (C) 2013 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Energy research is to a large extent materials research, encompassing the physics and chemistry of materials, including their synthesis, processing toward components and design toward architectures, allowing for their functionality as energy devices, extending toward their operation parameters and environment, including also their degradation, limited life, ultimate failure and potential recycling. In all these stages, X-ray and electron spectroscopy are helpful methods for analysis, characterization and diagnostics for the engineer and for the researcher working in basic science.This paper gives a short overview of experiments with X-ray and electron spectroscopy for solar energy and water splitting materials and addresses also the issue of solar fuel, a relatively new topic in energy research. The featured systems are iron oxide and tungsten oxide as photoanodes, and hydrogenases as molecular systems. We present surface and subsurface studies with ambient pressure XPS and hard X-ray XPS, resonant photoemission, light induced effects in resonant photoemission experiments and a photo-electrochemical in situ/operando NEXAFS experiment in a liquid cell, and nuclear resonant vibrational spectroscopy (NRVS). (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Graphene nanosheet (GNS) was synthesized by using microwave plasma enhanced CVD on copper substrate and followed by evaporation of tin metal. Scanning and transmission electron microscopy show that nanosize Sn particles are well embedded into the GNS matrix. The composition, structure, and electrochemical properties were characterized by X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), cyclic voltammetry (CV) and chrono-potentiometry. The first discharge capacity of as-deposited and annealed SnGNS obtained was 1551 mA h/g and 975 mA h/g, respectively. The anodes show excellent cyclic performance and coulombic efficiency.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The dihexyl substituted poly (3,4-propylenedioxythiophene) (PProDOT-Hx(2)) thin films uniformly deposited by cost effective spray coating technique on transparent conducting oxide coated substrates. The electro-optical properties of PProDOT-Hx(2) films were studied by UV-Vis spectroscopy that shows the color contrast about 45% with coloration efficiency of approximate to 185cm(2)/C. The electrochemical properties of PProDOT-Hx(2) films were studied by cyclic voltammetry and AC impedance techniques. The cyclic voltammogram shows that redox reaction of films are diffusion controlled and ions transportation will be faster on the polymer film at higher scan rate. Impedance spectra indicate that polymer films are showing interface charge transfer process as well as capacitive behavior between the electrode and electrolyte. The XRD of the PProDOT-Hx(2) thin films revealed that the films are in amorphous nature, which accelerates the transportation of ions during redox process.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Porous alpha-Fe2O3 nanostructures have been synthesized by sol-gel route. The effect of preparation temperature on the morphology, structure, and electrochemical stability upon cycling has been studied for supercapacitor application. The discharge capacitance of alpha-Fe2O3 prepared at 300 A degrees C is 193 F g(-1), when the electrodes are cycled in 0.5 M Na2SO3 at a specific current of 1 A g(-1). The capacitance retention after 1,000 cycles is about 92 % of the initial capacitance at a current density of 2 A g(-1). The high discharge capacitance as well as stability of alpha-Fe2O3 electrodes is attributed to large surface area and porosity of the material. There is a decrease in specific capacitance (SC) on increasing the preparation temperature. As iron oxides are inexpensive, the synthetic route adopted for alpha-Fe2O3 in the present study is convenient and the SC is high with good cycling stability, the porous alpha-Fe2O3 is a potential material for supercapacitors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We are reporting the fabrication, characterizations and supercapacitance performance of benzimidazole-grafted graphene oxide/multi-walled carbon nanotubes (BI-GO/MWCNTs) composite. The synthesis of BI-GO materials involves cyclization reaction of carboxylic groups on GO among the hydroxyl and amino groups on o-phenylenediamine. The BI-GO/MWCNTs composite has been fabricated via in situ reduction of BI-GO using hydrazine in presence of MWCNTs. Scanning electron microscopy (SEM), Transmission electron microscopy (TEM), Raman spectroscopy, X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) have been used to characterize its surface and elemental composition. The uniform dispersion of MWCNTs with BI-GO helps to improve the charge transfer reaction during electrochemical process. The specific capacitance of BI-GO/MWCNTs composite is 275 and 460 F/g at 200 and 5 mV/s scan rate in 1 mol/L aqueous solution of H2SO4. This BI-GO/MWCNTs composite has shown 224 F/g capacitance after 1300 cycles at 200 mV/s scan rate, which represents its good electrochemical stability. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Manipulation of matter at the nanoscale is a way forward to move beyond our current choices in electrochemical energy storage and conversion technologies with promise of higher efficiency, environmental benignity, and cost-effectiveness. Electrochemical processes being basically surface phenomena, tailored multifunctional nanoarchitecturing can lead to improvements in terms of electronic and ionic conductivities, diffusion and mass transport, and electron transfer and electrocatalysis. The nanoscale is also a domain in which queer properties surface: those associated with conversion electrodes, ceramic particles enhancing the conductivity of polymer electrolytes, and transition metal oxide powders catalyzing fuel cell reactions, to cite a few. Although this review attempts to present a bird's eye view of the vast literature that has accumulated in this rather infant field, it also lists a few representative studies that establish the beneficial effects of going `nano'. Investigations on nanostructuring and use of nanoparticles and nanoarchitectures related to lithium-ion batteries (active materials and electrolytes), supercapacitors (electrical double-layer capacitors, supercapacitors based on pseudo-capacitance, and hybrid supercapacitors), and fuel cells (electrocatalysts, membranes and hydrogen storage materials) are highlighted. (C) 2012 John Wiley & Sons, Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An electrochemical exfoliation based synthetic methodology to produce graphene is provided. An eco-friendly and non-toxic tetrasodium pyrophosphate solution in which the pyrophosphate anion acts as an intercalating ion was used as the electroactive media. Five different ion intercalation potentials were used. Characterization by microscopy, X-ray diffraction, Raman spectroscopy and UV-Visible spectroscopic techniques confirmed that all the potentials produced nano to micrometer sized graphene sheets. No trace of graphene oxide was detected. It was observed that (i) an increase in the intercalation potential increased the graphene yield and (ii) the defect density of graphene did not change significantly with a change in the intercalation potential.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A Zn-graphene composite coating was electrodeposited on mild steel. The graphene was synthesized by electrochemical exfoliation of graphite. Electron microscopy, energy-dispersive X-ray spectroscopy and X-ray diffraction techniques were used to characterize the coatings. Compared to a pure Zn coating, the Zn-graphene coating exhibited reduced grain size, reduced surface defects, hillock structures over the coating surface and an altered texture. The corrosion behavior of the coatings was examined by Tafel polarization and electrochemical impedance spectroscopic methods. A significant improvement in the corrosion resistance in terms of reduction in corrosion current and corrosion rate and increase in polarization resistance was noted in the case of the Zn coating containing graphene.