202 resultados para Elastic instability
Resumo:
The elastic constantsC 11,C 12 and C 44 of sodium chlorate single crystal have been evaluated using 10 MHz ultrasonic pulse echo superposition technique. The values are C 11=4.90,C 12=1.39,C 44=1.17 (× 1010 N/m 2) at 298 K and 6.15, 2.16, 1.32 (×1010 N/m 2) at 77 K. The data agree well with the values measured earlier up to 223 K. Brief mention is also made of the low temperature bonding problems in these soft crystals.
Resumo:
A method is presented for obtaining, approximately, the response covariance and probability distribution of a non-linear oscillator under a Gaussian excitation. The method has similarities with the hierarchy closure and the equivalent linearization approaches, but is different. A Gaussianization technique is used to arrive at the output autocorrelation and the input-output cross-correlation. This along with an energy equivalence criterion is used to estimate the response distribution function. The method is applicable in both the transient and steady state response analysis under either stationary or non-stationary excitations. Good comparison has been observed between the predicted and the exact steady state probability distribution of a Duffing oscillator under a white noise input.
Resumo:
The nonlinear theory of the instability caused by an electron beam-plasma interaction is studied. A nonlinear analysis has been carried out using many-body methods. A general formula for a neutral collisionless plasma, without external fields, is derived. This could be used for calculating the saturation levels of other instabilities. The effect of orbit perturbation theory on the beam-plasma instability is briefly reviewed.
Resumo:
The nature of the neutral curves for the stability of a Helmholtz velocity profile in a stratified, Boussinesq fluid in the presence of a uniform magnetic field for the cases (1) an infinite fluid (2) a semi-infinite fluid with a rigid boundary is discussed.
Resumo:
THE following equations governing the phenomenon of intrinsic instability of combustion, leading to low frequency oscillations in a rocket motor using a single liquid propellant, were derived and investigated by L. Crocco.
Resumo:
It is proposed that the wave mediated indirect wave-particle interaction may be responsible for nonlinear saturation of current driven low frequency ion-acoustic turbulence. This process decreases the growth rate and increases the damping rate of the wave. Comparison has been made with some experiments.
Resumo:
In this paper, an overview of some recent numerical simulations of stationary crack tip fields in elastic-plastic solids is presented. First, asymptotic analyses carried out within the framework of 2D plane strain or plane stress conditions in both pressure insensitive and pressure sensitive plastic solids are reviewed. This is followed by discussion of salient results obtained from recent computational studies. These pertain to 3D characteristics of elastic-plastic near-front fields under mixed mode loading, mechanics of fracture and simulation of near-tip shear banding process of amorphous alloys and influence of crack tip constraint on the structure of near-tip fields in ductile single crystals. These results serve to illustrate several important features associated with stress and strain distributions near the crack tip and provide the foundation for understanding the operative failure mechanisms. The paper concludes by highlighting some of the future prospects for this field of study.
Resumo:
An anomalous variation in the experimental elastic modulus, E, of Ti-6Al-4V-xB (with x up to 0.55 wt.%) is reported. Volume fractions and moduli of the constituent phases were measured using microscopy and nanoindentation,respectively. These were used in simple micromechanical models to examine if the E values could be rationalized. Experimental E values higher than the upper bound estimates suggest complex interplay between microstructural modifications, induced by the addition of B, and properties.
Resumo:
Boron Nitride Nanotubes (BNNTs) have alternating boron and nitrogen atoms in graphite like network and are strongly polar in nature due to a large charge on boron and nitrogen atoms. Hence electrostatic interactions are expected to play an important role in determining the elastic properties of BNNTs. In the absence of specific partial atomic charge information for boron and nitrogen, we have studied the elastic properties BNNTs varying the partial atomic charges on boron and nitrogen. We have computed Young modulus (Y) and Shear modulus (G) of BNNT as a function of the tube radius and number of walls using molecular mechanics calculation. Our calculation shows that Young modulus of BNNTs increases with increase in magnitude of the partial atomic charge on B and N and can be larger than the Young modulus of CNTs of same radius. This is in contrast to the earlier finding that CNTs has the largest tensile strength (PRL, 80, 4502, 1998). Shear modulus, on the other hand depends weakly on the magnitude of partial atomic charge and is less than the shear modulus of the CNT. The values obtained for Young modulus and Shear modulus are in excellent agreement with the available experimental results.
Resumo:
It is shown that pure exponential discs in spiral galaxies are capable of supporting slowly varying discrete global lopsided modes, which can explain the observed features of lopsidedness in the stellar discs. Using linearized fluid dynamical equations with the softened self-gravity and pressure of the perturbation as the collective effect, we derive self-consistently a quadratic eigenvalue equation for the lopsided perturbation in the galactic disc. On solving this, we find that the ground-state mode shows the observed characteristics of the lopsidedness in a galactic disc, namely the fractional Fourier amplitude A(1), increases smoothly with the radius. These lopsided patterns precess in the disc with a very slow pattern speed with no preferred sense of precession. We show that the lopsided modes in the stellar disc are long-lived because of a substantial reduction (approximately a factor of 10 compared to the local free precession rate) in the differential precession. The numerical solution of the equations shows that the groundstate lopsided modes are either very slowly precessing stationary normal mode oscillations of the disc or growing modes with a slow growth rate depending on the relative importance of the collective effect of the self-gravity. N-body simulations are performed to test the spontaneous growth of lopsidedness in a pure stellar disc. Both approaches are then compared and interpreted in terms of long-lived global m = 1 instabilities, with almost zero pattern speed.
The partition of unity finite element method for elastic wave propagation in Reissner-Mindlin plates
Resumo:
This paper reports a numerical method for modelling the elastic wave propagation in plates. The method is based on the partition of unity approach, in which the approximate spectral properties of the infinite dimensional system are embedded within the space of a conventional finite element method through a consistent technique of waveform enrichment. The technique is general, such that it can be applied to the Lagrangian family of finite elements with specific waveform enrichment schemes, depending on the dominant modes of wave propagation in the physical system. A four-noded element for the Reissner-indlin plate is derived in this paper, which is free of shear locking. Such a locking-free property is achieved by removing the transverse displacement degrees of freedom from the element nodal variables and by recovering the same through a line integral and a weak constraint in the frequency domain. As a result, the frequency-dependent stiffness matrix and the mass matrix are obtained, which capture the higher frequency response with even coarse meshes, accurately. The steps involved in the numerical implementation of such element are discussed in details. Numerical studies on the performance of the proposed element are reported by considering a number of cases, which show very good accuracy and low computational cost. Copyright (C)006 John Wiley & Sons, Ltd.
Resumo:
Elastic properties of Li2O-PbO-B2O3 glasses have been investigated using sound velocity measurements at 10 MHz. Four series of glasses have been investigated with different concentrations of Li2O, PbO and B2O3. The variations of molar volume have been examined for the influences of Li2O and PbO. The elastic moduli reveal trends in their compositional dependence. The bulk and shear modulus increases monotonically with increase in the concentration of tetrahedral boron which increases network dimensionality. The variation of bulk moduli has also been correlated to the variation in energy densities. The Poisson's ratio found to be insensitive to the concentration of tetrahedral boron in the structure. The experimental Debye temperatures are in good agreement with the expected theoretical values. Experimental observations have been examined in view, the presence of borate network and the possibility of non-negligible participation of lead in network formation. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
The instability of coupled longitudinal and transverse electromagnetic modes associated with long wavelengths is studied in bounded streaming plasmas. The main conclusions are as follows: (i) For long waves for which O (k 2)=0, in the absence of relative streaming motion of electrons and ions and aωp/c<0.66, the whole spectrum of harmonic waves is excited due to finite temperature and boundary effects consisting of two subseries. One of these subseries can be identified with Tonks-Dattner resonance oscillations for the electrons, and arises primarily due to the electrons with frequencies greater than the electrostatic plasma frequency corresponding to the electron density in the midplane in the undisturbed state. The other series arises primarily due to ion motion. When aωp/c>0.66, in addition to the above spectrum of harmonic waves, the system admits an infinite number of growing and decaying waves. The instability associated with these modes is found to arise due to the interaction of the waves inside the plasma with the external electromagnetic field. (ii) For modes with comparatively shorter wavelengths for which O (k3)=0, the coupling due to finite temperature sets in, and it is found that the two series of harmonic waves obtained in (i) deriving energy from the transverse modes also become unstable. Thus, for these wavelengths the system admits three sets of growing and decaying modes, first two for all values of aωp/c and the third for (aωp/c) > 0.66. (iii) The presence of streaming velocities introduces various other coupling mechanisms, and we find that even for the wavelengths for which O (k2)=0, we get three sets of growing and decaying waves. The numerical values for the growth rates show that the streaming velocities enhance the growth rates of instability significantly.
Resumo:
The problem of two-stream instability in plasma is studied by specifying the importance of initial magnetic field associated with the motion of the charged particles and the boundary effects. In Part I the accurate initial steady state is studied when the streams of electrons and ions move with different uniform speeds in plasmas with plane and cylindrical geometry. In Part II, in order to show the effects of finiteness and inhomogeneity of the system, small transverse plasma oscillations are studied in the case of plane plasmas. The role of plasma-sheath oscillations at the boundaries is found to be very important in driving the instabilities associated with the electromagnetic modes. The numerical estimates of the growth rates of the instability are given for the specific case of the physical data in discharge tubes.