138 resultados para Econazole nitrate
Resumo:
1. A detailed polarographic study of cadmium has been made employing glycine, α-alanine, β-alanine, valine, aspartic acid, glutamic acid and asparagine as complexing agents at various pH values. The effect of incorporating sodium hydroxide, sodium carbonate and ammonium nitrate + ammonium hydroxide, on the polarographic behaviour of amino acid complexes of cadmium has also been investigated. 2. The reduction process has been found to be reversible in all systems. 3. The small shifts in the half-wave potentials noticed due to increase in the concentration of sodium hydroxide and sodium carbonate in presence of amino acids have been explained on the basis of formation of mixtures of pure and mixed amino acid complexes of cadmium. Mixed complexes have also been noticed in presence of ammonium hydroxide and ammonium nitrate and amino acids. 4. Polarographic evidence has been obtained for the formation of over 30 pure and mixed complexes. The dissociation constant Kd, the Δ F° value for the dissociation, and standard potential value for the formation, of each complex have been computed. 5. It has been found that cadmium can be polarographically estimated in amino acid solutions.
Resumo:
1. The polarographic behaviour of glycine, α-alanine, β-alanine, valine, aspartic acid, glutamic acid and asparagine complexes of lead has been studied at various pH values and in presence of (1) NaOH, (2) Na2CO3 and (3) NH4 NO3+NH4OH. All the polarographic waves have been found to be reversible. 2. Experiments conducted on the effect of variation of pH, i.e., 7
Resumo:
Thorium(IV) is known to form high coordination-number complexes. An attempt has therefore been made to determine the effect of anions on the coordination complexes of diphenyl sulphoxide (DPSO) with thorium(IV). The complexes formed have the formulae [Th(DPSO)6](ClO4)4, [Th(DPSO)4Cl4], [Th(DPSO)4Br4], [Th(DPSO)6I2]I2, [Th(DPSO)4(NCS)4]and [Th(DPSO)3(NO3)4]. In all the complexes, DPSO is coordinated to the metal ion through its oxygen. The electrical conductances in nitrobenzene and in nitromethane, and ebullioscopic molecular weights in acetonitrile, show that the perchlorate and iodide complexes behave as 1:4 and 1:2 electrolytes, respectively; while the other complexes are monomeric and non-electrolytes. The infrared spectra of the solid complexes indicate the ionic nature of the perchlorate, the bidentate nature of the nitrate and the coordination of the thiocyanate through its nitrogen. [Th(DPSO)4Cl4], [Th(DPSO)4Br4]and [Th-(DPSO)3 (NO3)4]decompose endothermically while [Th(DPSO)6](ClO4)4 and [Th(DPSO)4(NCS)4]decompose exothermically, both in air and in nitrogen. The perchlorate complex has octahedral symmetry around the thorium, the halo- and the thiocyanato complexes are 8-coordinate, probably with square antiprismatic structures, while the nitrate complex is 11-coordinate
Resumo:
Previous attempts for the quantitative estimation of lithium as orthophosphate, employing an alkali metal phosphate, have not been successful. A method, is described for the estimation of lithium as trilithium phosphate from 60% ethyl alcohol solution at 65° to 70° C., employing potassium phosphate reagent, at pH 9.5. The method is applicable in the presence of varying amounts of sodium and/or potassium cations and chloride, sulfate, nitrate, and phosphate anions.
Resumo:
The thermal ignition behaviour of various mixtures of organic fuels, magnesium and ammonium nitrate (AN) has been examined by differential thermal analysis technique. It has been observed that the thermal decomposition/ignition of organic fuel-AN mixtures is modified significantly in the presence of magnesium metal. The decomposition characteristics of the binary mixtures of AN with various metals indicate the specific action of magnesium and zinc in lowering the decomposition temperature. A possible explanation for the low temperature decomposition is given in terms of the solid state reaction causing the fusion of AN which further reacts with the metal resulting in a highly exothermic reaction.
Resumo:
Silver salts of hexafluorophosphates, tetrafluoro-borates and hexafluorosilicates have been prepared by a metathetic reaction between the respective ammonium salts and silver nitrate in acetonitrile medium. This one step procedure at room temperature offers salts of high purity in good yields. The salts (AgpF6, AgBF4 and Ag2SiF6) have been characterised by IR spectral data analysis and chemical analysis.
Resumo:
New complexes of lanthanide nitrates with N, N-diethylantipyrine-4-carboxamide (DEAP), with the general formulae [Ln2(DEAP)3] [NO3]6 (where Ln = La, Pr, Nd, Sm, Tb, Ho, Er, Yb and Y) have been isolated and characterized by chemical analysis and various physical methods such as electrolytic conductance, IR and13C NMR spectral data. Electrolytic conductance values and infrared spectral studies indicate that the nitrate groups are coordinated. Infrared and13C NMR spectral analysis show that the ligand DEAP is coordinated to the tripositive metal ion through the diethylcarboxamide carbonyl and antipyrine carbonyl oxygens in a bidentate fashion.
Resumo:
A substituted phosphoramidate has been used as a ligand to lanthanides for the first time. New complexes of lanthanide nitrates with O,O′,N-triisopropyl phosphoramidate (TIP) of the general formula Ln(TIP)3(NO3)3 where Ln=La-Yb and Y have been synthesised and characterised by chemical analysis, infrared and visible electronic spectra and electrical conductance.Infrared spectra indicate the coordination of the ligand to the metal ions through the oxygen of the P=O group. IR and conductance show that the nitrate groups are all coordinated. Electronic spectral shapes have been interpreted in terms of an eight coordinate geometry around the metal ions.
Resumo:
Members of the Y3?xBa3+xCu6O14+? system prepared at relatively low temperatures by nitrate decomposition have a tetragonal structure and show superconducting transitions (zero-resistance) around 50K.
Resumo:
Highly stable silver nanoparticles (Ag NPs) in agar-agar (Ag/agar) as inorganic-organic hybrid were obtained as free-standing film by in situ reduction of silver nitrate by ethanol. The antimicrobial activity of Ag/agar film on Escherichia coli (E. coil), Staphylococcus aureus (S. aureus), and Candida albicans (C albicans) was evaluated in a nutrient broth and also in saline solution. In particular, films were repeatedly tested for antimicrobial activity after recycling. UV-vis absorption and TEM studies were carried out on films at different stages and morphological studies on microbes were carried out by SEM. Results showed spherical Ag NPs of size 15-25 nm, having sharp surface plasmon resonance (SPR) band. The antimicrobial activity of Ag/agar film was found to be in the order, C. albicans > E. coil > S. aureus, and antimicrobial activity against C. albicans was almost maintained even after the third cycle. Whereas, in case of E. coil and S. aureus there was a sharp decline in antimicrobial activity after the second cycle. Agglomeration of Ag NPs in Ag/agar film on exposure to microbes was observed by TEM studies. Cytotoxic experiments carried out on HeLa cells showed a threshold Ag NPs concentration of 60 mu g/mL, much higher than the minimum inhibition concentration of Ag NPs (25.8 mu g/mL) for E. coli. The mechanical strength of the film determined by nanoindentation technique showed almost retention of the strength even after repeated cycle. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Using dynamic TG in H2, X-ray powder diffraction and Mössbauer Spectroscopy the reactivities fot hydrogen reduction of Fe2O3 prepared at different temperatures, Fe2O3 doped with oxides of Mn, Co, Ni and Cu prepared at 300DaggerC from nitrate precursors and intermediate spinels derived from above samples during reduction have been explored. The reactivity is higher for finely divided Fe2O3 prepared at 250DaggerC. The reduction is retarded by Mn, marginally affected by Co and accelerated by Ni and Cu, especially at higher (5 at.%) dopant concentration. These reactivities confirmed also by isothermal experiments, are ascribed to the nature of disorder in the metastable intermediate spinels and to hydrogen rsquospill overrsquo effects.
Resumo:
A pure sample of nitrosyl chloride has been prepared either by reaction of phosphorus trichloride with concentrated nitric acid or by reaction of phosphorus trichloride with sodium nitrate in presence of water. The nitrosyl chloride gas has been characterized by i.r. spectral data and elemental analysis.
Resumo:
An experimental setup using radiative heating has been used to understand the thermo-physical phenomena and chemical transformations inside acoustically levitated cerium nitrate precursor droplets. In this transformation process, through infrared thermography and high speed imaging, events such as vaporization, precipitation and chemical reaction have been recorded at high temporal resolution, leading to nanoceria formation with a porous morphology. The cerium nitrate droplet undergoes phase and shape changes throughout the vaporization process. Four distinct stages were delineated during the entire vaporization process namely pure evaporation, evaporation with precipitate formation, chemical reaction with phase change and formation of final porous precipitate. The composition was examined using scanning and transmission electron microscopy that revealed nanostructures and confirmed highly porous morphology with trapped gas pockets. Transmission electron microscopy (TEM) and high speed imaging of the final precipitate revealed the presence of trapped gases in the form of bubbles. TEM also showed the presence of nanoceria crystalline structures at 70 degrees C. The current study also looked into the effect of different heating powers on the process. At higher power, each phase is sustained for smaller duration and higher maximum temperature. In addition, the porosity of the final precipitate increased with power. A non-dimensional time scale is proposed to correlate the effect of laser intensity and vaporization rate of the solvent (water). The effect of acoustic levitation was also studied. Due to acoustic streaming, the solute selectively gets transported to the bottom portion of the droplet due to strong circulation, providing it rigidity and allows it become bowl shaped. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
In the present study silver nanoparticles were rapidly synthesized at room temperature by treating silver ions with the Citrus limon (lemon) extract The effect of various process parameters like the reductant con centration mixing ratio of the reactants and the concentration of silver nitrate were studied in detail In the standardized process 10(-2) M silver nitrate solution was interacted for 411 with lemon Juice (2% citric acid concentration and 0 5% ascorbic acid concentration) in the ratio of 1 4(vol vol) The formation of silver nanoparticles was confirmed by Surface Plasmon Resonance as determined by UV-Visible spectra in the range of 400-500 nm X ray diffraction analysis revealed the distinctive facets (1 1 1 200 220 2 2 2 and 3 1 1 planes) of silver nanoparticles We found that citric acid was the principal reducing agent for the nanosynthesis process FT IR spectral studies demonstrated citric acid as the probable stabilizing agent Silver nanoparticles below 50 nm with spherical and spheroidal shape were observed from transmission electron microscopy The correlation between absorption maxima and particle sizes were derived for different UV-Visible absorption maxima (corresponding to different citric acid concentrations) employing MiePlot v 3 4 The theoretical particle size corresponding to 2% citric acid concentration was corn pared to those obtained by various experimental techniques like X ray diffraction analysis atomic force microscopy and transmission electron microscopy (C) 2010 Elsevier B V All rights reserved
Resumo:
Sol-Gel method was employed to synthesize pure and wide ranged La-modified CaCu3Ti4O12 ceramics using mixed acetate-nitrate-alcoxide individual metal-ion precursors. SEM pictures revealed that grain size monotonously decreases with the extent of La incorporation. All the prepared ceramics manifested dielectric constant in the range similar to 10(3)-10(4). Dielectric loss was found to decrease with La incorporation and got optimized for 20% La3+ while retaining its high dielectric constant which may be industrially important. Room temperature Impedance spectroscopy suggested that decrease in grain resistance is responsible for reduction in dielectric loss according to Internal Barrier Layer Capacitor (IBLC) model.