163 resultados para Ecological Interface
Resumo:
We present a first-principles theory of the equilibrium b.c.c.-f.c.c. interface at coexistence using the density functional method. We assume that the interfacial region has local body-centred tetragonal (b.c.t.) symmetry and predict typical interfacial widths to be of order 2 to 3 lattice spacings with typical energies close to 0.05 J/m2. These quantities are in good agreement with laboratory measurements on coherent interfaces.
Resumo:
In this work, dynamic crack growth along a ductile-brittle interface under anti-plane strain conditions is studied. The ductile solid is taken to obey the J(2) flow theory of plasticity with linear isotropic strain hardening, while the substrate is assumed to exhibit linear elastic behavior. Firstly, the asymptotic near-tip stress and velocity fields are derived. These fields are assumed to be variable-separable with a power singularity in the radial coordinate centered at the crack tip. The effects of crack speed, strain hardening of the ductile phase and mismatch in elastic moduli of the two phases on the singularity exponent and the angular functions are studied. Secondly, full-field finite element analyses of the problem under small-scale yielding conditions are performed. The validity of the asymptotic fields and their range of dominance are determined by comparing them with the results of the full-field finite element analyses. Finally, theoretical predictions are made of the variations of the dynamic fracture toughness with crack velocity. The influence of the bi-material parameters on the above variation is investigated.
Resumo:
The binding affinity of the oligosaccharide moiety of a neutral glycosphingolipid, asialoGM1, towards Ricinus communis agglutinin (RCAI) was determined for the first time by fluorescence resonance energy transfer (RET). The asialoGM1 was incorporated into a phospholipid (DMPC) vesicle doped with dansylated DPPE and then titrated with an increasing amount of the galactose specific RCAI. The efficiency of RET was determined by a saturable increase in the quenching of 'donor' fluorescence, i.e. the 'trp' residue of RCAI, due to the energy transfer from the 'acceptor' dansyl group on the surface of the vesicle. The apparent binding constant was found to be in the range of 10(5)-10(6) M-1 at 27 degrees C.
Resumo:
At the heart of understanding cellular processes lies our ability to explore the specific nature of communication between sequential information carrying biopolymers. However, the data extracted from conventional solution phase studies may not reflect the dynamics of communication between recognized partners as they occur in the crowded cellular milieu. We use the principle of immobilization of histidine-tagged biopolymers at a Ni(II)-encoded Langmuir monolayer to study sequence-specific protein-protein interactions in an artificially crowded environment The advantage of this technique lies in increasing the surface density of one of the interacting partners that allows us to study macromolecular interactions in a controlled crowded environment, but without compromising the speed of the reactions. We have taken advantage of this technique to follow the sequential assembly process of the multiprotein complex Escherichia coil RNA polymerase at the interface and also deciphered the role of one of the proteins, omega (omega), in the assembly pathway. Our reconstitution studies indicate that in the absence of molecular chaperones or other cofactors, omega (omega) plays a decisive role in refolding the largest protein beta prime (beta') and its recruitment into the multimeric assembly to reconstitute an active RNA polymerase. It was also observed that the monolayer had the ability to distinguish between sequence-specific and -nonspecific interactions despite the immobilization of one of the biomacromolecules. The technique provides a universal two-dimensional template for studying protein-ligand interactions while mimicking molecular crowding.
Resumo:
A general kind of Brownian vortices is demonstrated by applying an external nonconservative force field to a colloidal particle bound by a conservative optical trapping force at a liquid-air interface. As the liquid medium is translated at a constant velocity with the bead trapped at the interface, the drag force near the surface provides enough rotational component to bias the particle's thermal fluctuations in a circulatory motion. The interplay between the thermal fluctuations and the advection of the bead in constituting the vortex motions is studied, and we infer that the angular velocity of the circulatory motion offers a comparative measure of the interface fluctuations.
Resumo:
A three-species food chain model is studied analytically as well as numerically. Integrability of the model is studied using Painleve analysis while chaotic behavior is studied using numerical techniques, such as calculation of Lyapunov exponents, plotting the bifurcation diagram and phase plots. We correct and critically comment on the wrong results reported recently on this ecological model, in a paper by Rai [1995].
Resumo:
This paper analyses environmental and socio-economic barriers for plantation activities on local and regional level and investigates the potential for carbon finance to stimulate the increased rates of forest plantation on wasteland, i.e., degraded lands, in southern India. Building on multidisciplinary field work and results from the model GCOMAP, the aim is to (1) identify and characterize the barriers to plantation activities in four agro-ecological zones in the state of Karnataka and (2) investigate what would be required to overcome these barriers and enhance the plantation rate and productivity. The results show that a rehabilitation of the wasteland based on plantation activities is not only possible but also anticipated by the local population and would lead to positive environmental and socio-economic effects at a local level. However, in many cases, the establishment of plantation activities is hindered by a lack of financial resources, low land productivity and water scarcity. Based on the model used and the results from the field work, it can be concluded that certified emission reductions such as carbon credits or other compensatory systems may help to overcome the financial barrier; however, the price needs to be significantly increased if these measures are to have any large-scale impact.
Resumo:
foam, either stacked together as three layers (MC) or inserted at three different positions (3L) while arranging the stacking sequence during the fabrication of glass fiber-epoxy composites, form the subject of investigation. This stacking variation resulted in a different interfacial area between these foam materials and the glass-epoxy regions in the laminates. This area in designed to be maximum for the 3L variety. The energy of impact being high enough to cause development of the crack in the samples, how the change in interfacial area affects the traverse of the crack front and the failure feature of the laminated composite are reported in the form of photomacrographs in this work. The results point to significant changes for the impact data, like for instance the peak load attained by the different samples, through thickness crack propagation and tensile fracture features on the non-impacted end for the plain variety, separation about the mid-zone for the MC laminates and two or more layer separations for the 3L variety. The separation for the foam-bearing systems occur invariably at the interface and here again one of the (two identical) interfaces only is chosen for the separation.
Resumo:
The effect on the macroscopic compressive failure features of introduction of two flexible foam layers, either together at mid-region or separately at two locations that are away from the midregion, into a glass-epoxy (G-E) system is studied in this work. In this experimental approach an attempt to look at the possible influence the foam/G-E interface region has on the way the materials respond to compressive loading is made by involving an analyses of macrofractographic features. While foam-free samples fail by extensive ear formation and separation nearer to the mid-region, the foam bearing ones display pronounced interface separation. The positioning of the foam sheet(s) has a bearing on the failure features.
Resumo:
The complex singularity associated with a crack at the interface between two dissimilar, isotropic and homogeneous materials leads to mathematical artefacts, such as stress oscillations and crack face interpenetrations in the vicinity of the crack tip. To avoid these unrealistic features, Sinclair (Sinclair GB. On the stress singularity at an interface crack. International Journal of Fracture 1980;16(2):111-9) assumed a finite crack opening angle (COA) such that the singularity lambda became real equal to 1/2. This paper extends the COA model by considering real singularities not necessarily equal to 1/2. When COA is 0 degrees: the interface crack singularity is complex with a real part equal to 1/2. On increasing COA, the imaginary part of the singularity decreases and becomes zero at a threshold value of COA; at this point, the singularity is a real, repeated value. A further increase in COA results in a pair of real singularities. Different crack opening configurations and material combinations are studied, and results presented for threshold COAs and associated values of singularity. Stress analyses for these three regimes: (a) complex, (b) real pair and (c) real repeated singularities, are reported. It is seen that additional complexities are present in the last case. Typical results for stress fields are also included for comparing with standard fields. (C) 1999 Elsevier Science Ltd. All rights reserved.
Resumo:
Radially homogeneous bulk alloys of GaxIn1-xSb in the range 0.7 < x < 0.8, have been grown by vertical Bridgman technique. The factors affecting the interface shape during the growth were optimised to achieve zero convexity. From a series of experiments, a critical ratio of the temperature gradient (G) of the furnace at the melting point of the melt composition to the ampoule lowering speed (v) was deduced for attaining the planarity of the melt-solid interface. The studies carried out on directional solidification of Ga0.77In0.23Sb mixed crystals employing planar melt-solid interface exhibited superior quality than those with nonplanar interfaces. The solutions to certain problems encountered during the synthesis and growth of the compound were discussed. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
Hardened concrete is a three-phase composite consisting of cement paste, aggregate and interface between cement paste and aggregate. The interface in concrete plays a key role on the overall performance of concrete. The interface properties such as deformation, strength, fracture energy, stress intensity and its influence on stiffness and ductility of concrete have been investigated. The effect of composition of cement, surface characteristics of aggregate and type of loading have been studied. The load-deflection response is linear showing that the linear elastic fracture mechanics (LEFM) is applicable to characterize interface. The crack deformation increases with large rough aggregate surfaces. The strength of interface increases with the richness of concrete mix. The interface fracture energy increases as the roughness of the aggregate surface increases. The interface energy under mode II loading increases with the orientation of aggregate surface with the direction of loading. The chemical reaction between smooth aggregate surface and the cement paste seems to improve the interface energy. The ductility of concrete decreases as the surface area of the strong interface increases. The fracture toughness (stress intensity factor) of the interface seems to be very low, compared with hardened cement paste, mortar and concrete.
Resumo:
Particulate composites based on polymer matrices generally contain fillers, especially those that are abundantly available and are cheaper. The inclusion of these, besides improving the properties, makes the system costwise viable, In the present study, fly ash was tried as a filler in epoxy. The filler particle surfaces were modified using three chemical surface treatment techniques in order to elicit the effect of adhesion at the interface on the mechanical properties of these composites. The compatibilizing of the filler with the use of a silane coupling agent yielded the best compression strength values. Scanning Electron Microscopy (SEM) has been used to characterize and supplement the mechanical test data.
Resumo:
An experimental investigation on the bond strength of the interface between mortar and aggregate is reported. Composite compact specimens were used for applying Mode I and Mode 11 loading effects. The influence of the type of mortar and type of aggregate and its roughness on the bond strength of the interface has been studied. It has been observed that the bond strength of the interface in tension is significantly low, though the mortars exhibited higher strength. The highest tensile bond strength values have been observed with rough concrete surface with M-13 mortar. The bond strength of the interface in Mode I load depends on the type of aggregate surface and its roughness, and the type of mortar, The bond strength of the interface between mortar M-13 cast against rough concrete in direct tension seems to be about one third of the strength of the mortar. However, it is about 1/20th to 1/10th with the mortar M-12 in sandwiched composite specimens. The bond strength of the interface in shear (Mode IT) significantly increases as the roughness and the phase angle of the aggregate surface increase. The strength of mortar on the interface bond strength has been very significant. The sandwiched composite specimens show relatively low bond strength in Mode I loading. The behavior of the interface in both Mode I and Mode 11 loading effects has been brittle, indicating catastrophic failure. (C) 2002 Elsevier Science Ltd. All rights reserved.