287 resultados para Dynamic strain aging (DSA)


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The plastic deformation behavior and dynamic recrystallization (DRX) in homogenized AZ31 Mg alloy was investigated in uniaxial compression in the temperature range between 150 and 400 degrees C with strain rates ranging from 10(-3) to 10(2) s(-1). Twinning was found to contribute significantly during the early stages of deformation. The onset of twinning was examined in detail by recourse to the examination of the appearance of first local maxima before peak strain in the stress-strain responses and the second derivative of stress with strain. High strain hardening rate was observed immediately after the onset of twinning and was found to increase with the Zener-Hollomon parameter. DRX was observed at temperatures above 250 degrees C whereas deformation at lower temperatures (< 250 degrees C) leads to extensive twinning at all the strain rates. At intermediate temperatures of 250-300 degrees C, plastic strains tend to localize near grain/twin boundaries, confining DRX only to these regions. Increase in the temperature promotes non-basal slip, which, in turn, leads to uniform deformation; DRX too becomes uniform. Deformation behavior in three different regimes of temperature is discussed. The dependence of critical stress for the onset of DRX and peak flow stress on temperature and strain rate are also described. (C) 2013 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thermo-mechanically processed Ti-6Al-4V alloy, with (0.1 wt.%) and without boron addition, has been subjected to tensile test under superplastic deformation conditions (Temperature, T = 850 degrees C and initial strain rate, (epsilon) over dot = 3 x 10(-4) s(-1)). The boron added alloy exhibited higher elongation (similar to 430%) in comparison to the base alloy without boron (similar to 365%). Superior ductility of the boron added alloy has been attributed to an enhanced alpha/beta interfacial boundary sliding. This was caused by riotous dynamic globularization leading to the abundant presence of equiaxed primary alpha grains with refined sizes and narrow distribution in the deforming microstructure. Cavities do occur around TiB particles during deformation; the cavities are, however, extremely localized and do not cause macroscopic cracking. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Free-standing Pt-aluminide (PtAl) bond coat, when subjected to tensile testing at high temperatures (T >= 900 degrees C), exhibits significant decrease in strength and increase in ductility during deformation at strains exceeding that corresponding to the ultimate tensile strength (UTS), i.e., in the post-UTS regime. The stress-strain curve is also marked by serrations in this regime. Electron back scattered diffraction (EBSD) and transmission electron microscopy (TEM) studies suggest dynamic recovery and recrystallization (DRR) as the mechanisms for the observed tensile behavior in the coating. Activation energy values suggest vacancy diffusion assists DRR. The fine recrystallized grains formed after deformation had a strong < 110 > texture. (c) 2014 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study, mesoporous silica-cyclic olefin copolymer nanocomposite films were fabricated by solution casting. With an increase in silica loading, the stiffness of the matrix increased. The nanocomposite film shows increased strain to failure with moisture after aging by matrix plasticization. The storage modulus and loss factor for samples with silica content show better results compared with pristine polymer, as indicated by dynamic mechanical analysis. The interaction between filler-polymer chain exhibit hydrophobicity compared to the neat polymer. Water absorption studies at room temperature and near the T-g of the polymer (similar to 64 degrees C) were carried out. The nanocomposites up to 4 wt% filler reduces the water diffusion by forming hydrogen and chemical bonding. The result by calcium degradation test method for moisture permeability and Schottky structured organic device encapsulation under weathering condition confirms the effective reinforcement effect of silica particles in the matrix. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The growing threats due to increased use of small-caliber armor piercing projectiles demand the development of new light-weight body armor materials. In this context, TiB2 appears to be a promising ceramic material. However, poor sinterability and low fracture toughness remain two major issues for TiB2. In order to address these issues together, Ti as a sinter-aid is used to develop TiB2-(x wt pct Ti), (x = 10, 20) homogeneous composites and a bi-layered composite (BLC) with each layer having Ti content of 10 and 20 wt pct. The present study uniquely demonstrates the efficacy of two-stage spark plasma sintering route to develop dense TiB2-Ti composites with an excellent combination of nanoscale hardness (similar to 36 GPa) and indentation fracture toughness (similar to 12 MPa m(1/2)). In case of BLC, these properties are not compromised w.r.t. homogeneous composites, suggesting the retention of baseline material properties even in the bi-layer design due to optimal relief of residual stresses. The better indentation toughness of TiB2-(10 wt pct Ti) and TiB2-(20 wt pct Ti) composites can be attributed to the observed crack deflection/arrest, indicating better damage tolerance. Transmission electron microscope investigation reveals the presence of dense dislocation networks and deformation twins in alpha-Ti at the grain boundaries and triple pockets, surrounded by TiB2 grains. The dynamic strength of around 4 GPa has been measured using Split Hopkinson Pressure Bar tests in a reproducible manner at strain rates of the order of 600 s(-1). The damage progression under high strain rate has been investigated by acquiring real time images for the entire test duration using ultra-high speed imaging. An attempt has been made to establish microstructure-property correlation and a simple analysis based on Mohr-Coulomb theory is used to rationalize the measured strength properties.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The problem of modelling the transient response of an elastic-perfectly-plastic cantilever beam, carrying an impulsively loaded tip mass, is,often referred to as the Parkes cantilever problem 25]; The permanent deformation of a cantilever struck transversely at its tip, Proc. R. Soc. A., 288, pp. 462). This paradigm for classical modelling of projectile impact on structures is re-visited and updated using the mesh-free method, smoothed particle hydrodynamics (SPH). The purpose of this study is to investigate further the behaviour of cantilever beams subjected to projectile impact at its tip, by considering especially physically real effects such as plastic shearing close to the projectile, shear deformation, and the variation of the shear strain along the length and across the thickness of the beam. Finally, going beyond macroscopic structural plasticity, a strategy to incorporate physical discontinuity (due to crack formation) in SPH discretization is discussed and explored in the context of tip-severance of the cantilever beam. Consequently, the proposed scheme illustrates the potency for a more refined treatment of penetration mechanics, paramount in the exploration of structural response under ballistic loading. The objective is to contribute to formulating a computational modelling framework within which transient dynamic plasticity and even penetration/failure phenomena for a range of materials, structures and impact conditions can be explored ab initio, this being essential for arriving at suitable tools for the design of armour systems. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the present study, amino-silane modified layered organosilicates were used to reinforce cyclic olefin copolymer to enhance the thermal, mechanical and moisture impermeable barrier properties. The optimum clay loading (4%) in the nanocomposite increases the thermal stability of the film while further loading decreases film stability. Water absorption behavior at 62 degrees C was carried out and compared with the behavior at room temperature and 48 degrees C. The stiffness of the matrix increases with clay content and the recorded strain to failure for the composite films was lower than the neat film. Dynamic mechanical analysis show higher storage modulus and low loss modulus for 2.5-4 wt% clay loading. Calcium degradation test and device encapsulation also show the evidence of optimum clay loading of 4 wt% for improved low water vapor transmission rates compared to other nanocomposite films. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper reports the dynamic compression behavior of ultrafine grained (Hf, Zr)B-2-SiC composites, sintered using reactive spark plasma sintering at 1600 degrees C for 10 min. Dynamic strength of similar to 2.3 GPa has been measured using Split Hopkinson Pressure Bar (SHPB) tests in a reproducible manner at strain rates of 800-1300 s(-1). A comparison with competing boride based armor ceramics, in reference to the spectrum of properties evaluated, establishes the potential of (Hf, Zr)B-2-SiC composites for armor applications. (C) 2015 Elsevier Ltd and Techna Group S.r.l. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Non-invasive, real-time dynamic monitoring of pressure inside a column with the aid of Fiber Bragg Grating (FBG) sensor is presented in the present work. A bare FBG sensor is adhered on the circumference of a pressure column normal to its axis, which has the ability to acquire the hoop strain induced by the pressure variation inside the column. Pressure induced hoop strain response obtained using FBG sensor is validated against the pressure measurements obtained from conventional pressure gauge. Further, a protrusion setup on the outer surface of the column has been proposed over which a secondary FBG sensor is bonded normal to its axis, in order to increase the gauge length of this FBG sensor. This is carried out in order to validate the variation in sensitivity of the protrusion bonded FBG sensor compared to the bare FBG sensor bonded over the surface. A comparative study is done between the two FBG sensors and a conventional pressure gauge in order to establish the capacity of FBG sensor obtained hoop strain response for pressure monitoring inside the column.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

From sensing perspective, smaller electromechanical devices, in general, are expected to be more responsive to the stimuli. This enhanced performance, however, is contingent upon the noise sources remaining unchanged and the onset of nonlinear behavior not being precipitated by miniaturization. In this paper, we study the effect of strain on the nonlinearities and dynamic range in graphene nanoresonators. The dynamic response and the onset of nonlinearity in these devices are sensitive both to the electrostatic field used to actuate the device and the strain. By tuning the strain of the device by two orders of magnitude, we observe an enhancement of 25 dB in the dynamic range leading to a mass resolution of 100 yoctogram. The increase in dynamic range in our devices is modeled as a combined effect of strain and partial cancellation of elastic and electrostatic nonlinearities. (C) 2015 AIP Publishing LLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents the results of laboratory investigation carried out on Ahmedabad sand on the liquefaction and pore water pressure generation during strain controled cyclic loading. Laboratory experiments were carried out on representative natural sand samples (base sand) collected from earthquake-affected area of Ahmedabad City of Gujarat State in India. A series of strain controled cyclic triaxial tests were carried out on isotropically compressed samples to study the influence of different parameters such as shear strain amplitude, initial effective confining pressure, relative density and percentage of non-plastic fines on the behavior of liquefaction and pore water pressure generation. It has been observed from the laboratory investigation that the potential for liquefaction of the sandy soils depends on the shear strain amplitude, initial relative density, initial effective confining pressure and non-plastic fines. In addition, an empirical relationship between pore pressure ratio and cycle ratio independent of the number of cycles of loading, relative density, confining pressure, amplitude of shear strain and non-plastic fines has been proposed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although LH is essential for survival and function of the corpus luteum (CL) in higher primates, luteolysis occurs during nonfertile cycles without a discernible decrease in circulating LH levels. Using genome-wide expression analysis, several experiments were performed to examine the processes of luteolysis and rescue of luteal function in monkeys. Induced luteolysis with GnRH receptor antagonist (Cetrorelix) resulted in differential regulation of 3949 genes, whereas replacement with exogenous LH (Cetrorelix plus LH) led to regulation of 4434 genes (1563 down-regulation and 2871 up-regulation). A model system for prostaglandin (PG) F-2 alpha-induced luteolysis in the monkey was standardized and demonstrated that PGF(2 alpha) regulated expression of 2290 genes in the CL. Analysis of the LH-regulated luteal transcriptome revealed that 120 genes were regulated in an antagonistic fashion by PGF(2 alpha). Based on the microarray data, 25 genes were selected for validation by real-time RT-PCR analysis, and expression of these genes was also examined in the CL throughout the luteal phase and from monkeys treated with human chorionic gonadotropin (hCG) to mimic early pregnancy. The results indicated changes in expression of genes favorable to PGF(2 alpha) action during the late to very late luteal phase, and expressions of many of these genes were regulated in an opposite manner by exogenous hCG treatment. Collectively, the findings suggest that curtailment of expression of downstream LH-target genes possibly through PGF(2 alpha) action on the CL is among the mechanisms underlying cross talk between the luteotropic and luteolytic signaling pathways that result in the cessation of luteal function, but hCG is likely to abrogate the PGF(2 alpha)-responsive gene expression changes resulting in luteal rescue crucial for the maintenance of early pregnancy. (Endocrinology 150: 1473-1484, 2009)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The hot deformation behavior of hot isostatically pressed (HIPd) P/M IN-100 superalloy has been studied in the temperature range 1000-1200 degrees C and strain rate range 0.0003-10 s(-1) using hot compression testing. A processing map has been developed on the basis of these data and using the principles of dynamic materials modelling. The map exhibited three domains: one at 1050 degrees C and 0.01 s(-1), with a peak efficiency of power dissipation of approximate to 32%, the second at 1150 degrees C and 10 s(-1), with a peak efficiency of approximate to 36% and the third at 1200 degrees C and 0.1 s(-1), with a similar efficiency. On the basis of optical and electron microscopic observations, the first domain was interpreted to represent dynamic recovery of the gamma phase, the second domain represents dynamic recrystallization (DRX) of gamma in the presence of softer gamma', while the third domain represents DRX of the gamma phase only. The gamma' phase is stable upto 1150 degrees C, gets deformed below this temperature and the chunky gamma' accumulates dislocations, which at larger strains cause cracking of this phase. At temperatures lower than 1080 degrees C and strain rates higher than 0.1 s(-1), the material exhibits flow instability, manifested in the form of adiabatic shear bands. The material may be subjected to mechanical processing without cracking or instabilities at 1200 degrees C and 0.1 s(-1), which are the conditions for DRX of the gamma phase.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Power dissipation maps have been generated in the temperature range of 900 degrees C to 1150 degrees C and strain rate range of 10(-3) to 10 s(-1) for a cast aluminide alloy Ti-24Al-20Nb using dynamic material model. The results define two distinct regimes of temperature and strain rate in which efficiency of power dissipation is maximum. The first region, centered around 975 degrees C/0.1 s(-1), is shown to correspond to dynamic recrystallization of the alpha(2) phase and the second, centered around 1150 degrees C/0.001 s(-1), corresponds to dynamic recovery and superplastic deformation of the beta phase. Thermal activation analysis using the power law creep equation yielded apparent activation energies of 854 and 627 kJ/mol for the first and second regimes, respectively. Reanalyzing the data by alternate methods yielded activation energies in the range of 170 to 220 kJ/mol and 220 to 270 kJ/mol for the first and second regimes, respectively. Cross slip was shown to constitute the activation barrier in both cases. Two distinct regimes of processing instability-one at high strain rates and the other at the low strain rates in the lower temperature regions-have been identified, within which shear bands are formed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ultraviolet (UV) radiation is one of the major risk factors of cataract (loss of eye-lens transparency). The influence of UVB radiation (300 nm, 100 mu W cm(-2)) on the activity and apparent kinetic constants (K-m and V-max) of rat lens hexokinase (HK;EC2.7.1.1), phosphofructokinase (PFK;EC2.7.1.11), isocitrate dehydrogenase (ICDH;EC1.1.1.41) and malate dehydrogenase (MDH;EC1.1.1.37) of energy metabolism has been investigated by irradiating the lens homogenate of three-and 12-month-old rats. In the three-month-old group specific activities of HK and PFK are reduced by 56 and 43 %, respectively, and there is no change in ICDH and MDH activities after a 24 h exposure. On the other hand, in the 12-month-old group the decreases are 72, 71, 24 and 16 % for HK, PFK. ICDH and MDH, respectively. UVB irradiation increases the apparent K-m of HK and PFK (in both age groups), whereas the K-m of ICDH and MDH is not altered. While the decrease in V-max of these enzymes due to UVB exposure is only marginal in three-month-old rats, it is more pronounced (significant) in 12-month-old rats. A similar decrease in enzyme activities of HK and PFK is also observe upon UVB exposure of the intact rat lens. The photoinduced changes in energy metabolism may in turn have a bearing on lens transparency, particularly at an older age.