71 resultados para Dry ice
Resumo:
The well-known classical nucleation theory (CNT) for the free energy barrier towards formation of a nucleus of critical size of the new stable phase within the parent metastable phase fails to take into account the influence of other metastable phases having density/order intermediate between the parent metastable phase and the final stable phase. This lacuna can be more serious than capillary approximation or spherical shape assumption made in CNT. This issue is particularly significant in ice nucleation because liquid water shows rich phase diagram consisting of two (high and low density) liquid phases in supercooled state. The explanations of thermodynamic and dynamic anomalies of supercooled water often invoke the possible influence of a liquid-liquid transition between two metastable liquid phases. To investigate both the role of thermodynamic anomalies and presence of distinct metastable liquid phases in supercooled water on ice nucleation, we employ density functional theoretical approach to find nucleation free energy barrier in different regions of phase diagram. The theory makes a number of striking predictions, such as a dramatic lowering of nucleation barrier due to presence of a metastable intermediate phase and crossover in the dependence of free energy barrier on temperature near liquid-liquid critical point. These predictions can be tested by computer simulations as well as by controlled experiments. (C) 2014 AIP Publishing LLC.
Resumo:
Anthropogenic fires in seasonally dry tropical forests are a regular occurrence during the dry season. Forest managers in India, who presently follow a fire suppression policy in such forests, would benefit from a system of assessing the potential risk to fire on a particular day. We examined the relationship between weather variables (seasonal rainfall, relative humidity, temperature) and days of fire during the dry seasons of 2004-2010, based on MODIS fire incident data in the seasonally dry tropical forests of Mudumalai in the Western Ghats, southern India. Logistic regression analysis showed that high probabilities of a fire day, indicating successful ignition of litter and grass fuel on the forest floor, were associated with low levels of early dry season rainfall, low daily average relative humidity and high daily average temperatures. These weather conditions are representative of low moisture levels of fine fuels, suggesting that the occurrence of fire is moderated by environmental conditions that reduce the flammability of fine fuels in the dry tropics. We propose a quantitative framework for assessing risk of a fire day to assist forest managers in anticipating fire occurrences in this seasonally dry tropical forest, and possibly for those across South Asia.
Resumo:
We estimate the distribution of ice thickness for a Himalayan glacier using surface velocities, slope and the ice flow law. Surface velocities over Gangotri Glacier were estimated using sub-pixel correlation of Landsat TM and ETM+ imagery. Velocities range from similar to 14-85 m a(-1) in the accumulation region to similar to 20-30 ma(-1) near the snout. Depth profiles were calculated using the equation of laminar flow. Thickness varies from similar to 540 m in the upper reaches to similar to 50-60 m near the snout. The volume of the glacier is estimated to be 23.2 +/- 4.2 km(3).
Resumo:
In this study, the Tropical Rainfall Measurement Mission based Microwave Imager estimates (2A12) have been used to compare and contrast the characteristics of cloud liquid water and ice over the Indian land region and the ocean surrounding it, during the premonsoon (May) and monsoon (June-September) seasons. Based on the spatial homogeneity of rainfall, we have selected five regions for our study (three over ocean, two over land). Comparison across three ocean regions suggests that the cloud liquid water (CLW) over the orographically influenced Arabian Sea (close to the Indian west coast) behaves differently from the CLW over a trapped ocean (Bay of Bengal) or an open ocean (equatorial Indian Ocean). Specifically, the Arabian Sea region shows higher liquid water for a lower range of rainfall, whereas the Bay of Bengal and the equatorial Indian Ocean show higher liquid water for a higher range of rainfall. Apart from geographic differences, we also documented seasonal differences by comparing CLW profiles between monsoon and premonsoon periods, as well as between early and peak phases of the monsoon. We find that the CLW during the lean periods of rainfall (May or June) is higher than during the peak and late monsoon season (July-September) for raining clouds. As active and break phases are important signatures of the monsoon progression, we also analysed the differences in CLW during various phases of the monsoon, namely, active, break, active-to-break and break-to-active transition phases. We find that the cloud liquid water content during the break-to-active transition phase is significantly higher than during the active-to-break transition phase over central India. We speculate that this could be attributed to higher amount of aerosol loading over this region during the break phase. We lend credence to this aerosol-CLW/rain association by comparing the central Indian CLW with that over southeast Asia (where the aerosol loading is significantly smaller) and find that in the latter region, there are no significant differences in CLW during the different phases of the monsoon. While our hypothesis needs to be further investigated with numerical models, the results presented in this study can potentially serve as a good benchmark in evaluating the performance of cloud resolving models over the Indian region.
Resumo:
We sampled Palaearctic naked-toed geckos from across their range in India and used two mitochondrial and two nuclear genes to reconstruct relationships within a global phylogeny. Published sequences of Peninsular Indian Hemidactylus allow us to contrast these two groups in dating analyses - providing insights into the history of the Indian dry zone. Palaearctic naked-toed geckos first moved onto the Indian Plate in the Oligocene, with higher-level diversification probably linked to collision of the Indian and Eurasian plates, and subsequent dispersal into-India and diversification with increasing Miocene aridity. An independent gekkonid radiation with species in the dry zone, Hemidactylus diversified during the same period in Peninsular India. Our results demonstrate that dry zone taxa across India may date back to at least the Miocene, with a potential historical climatic barrier between the Indus and Peninsular Indian Divisions. `Cyrtopodion' aravallense is revealed to be a complex with seven genetically and environmentally divergent lineages that began diversifying in the late Miocene, congruent with increased aridity in north-western India. This discovery of cryptic diversity in the Indian dry zone represents the first terrestrial vertebrate radiation from north-western central India and highlights how little we understand of the regions' biodiversity, emphasizing the need for systematic geographic sampling and multiline evidence to reveal true patterns of diversity. The ancestor of `Cyrtopodion' aravallense came into the nascent Indian dry zone in the Miocene and has since diversified, potentially in the absence of any sympatric scansorial rupicolous geckos. Cyrtopodion scabrum represents a unique case of commensalism and shows phylogeographic structure in its presumed native range. The taxonomic implications of our study include a number of undescribed species, recognition of `Cyrtopodion' as a distinct lineage and the non-monophyly of Altiphylax.
Resumo:
The anti-icing properties of hydrophilic, hydrophobic and superhydrophobic surfaces/coatings were evaluated using a custom-built apparatus based on zero-degree cone test method. The ice-adhesion reduction factor (ARF) of these coatings has been evaluated using bare aluminium alloy as a reference. The wettability of the surfaces was evaluated by measuring water contact angle (WCA) and sliding angle. It was found that the ice-adhesion strength (tau) on silicone based hydrophobic surfaces was similar to 43 times lower than compared to bare polished aluminium alloy indicating excellent anti-icing property of these coatings. Superhydrophobic coatings displayed poor anti-icing property in spite of their high water repellence. Field Emission Scanning Electron Microscope reveal that Silicone based hydrophobic coatings exhibited smooth surface whereas the superhydrophobic coatings had a rough surface consisting of microscale bumps and protrusions superimposed with nanospheres. Both surface roughness and surface energy play a major role on the ice-adhesion strength of the coatings. The 3D surface roughness profiles of the coatings also indicated the same trend of roughness. An attempt is made to correlate the observed ice-adhesion strength of different surfaces with their wettability and surface roughness. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
Fire and soil temperatures were measured during controlled burns conducted by the Forest Department at two seasonally dry tropical forest sites in southern India, and their relationships with fuel load, fuel moisture and weather variables assessed using stepwise regression. Fire temperatures at the ground level varied between 79 degrees C and 760 degrees C, with higher temperatures recorded at high fuel loads and ambient temperatures, whereas lower temperatures were recorded at high relative humidity. Fire temperatures did not vary with fuel moisture or wind speed. Soil temperatures varied between <79 degrees C and 302 degrees C and were positively correlated with ground-level fire temperatures. Results from the study imply that fuel loads in forested areas have to be reduced to ensure low intensity fires in the dry season. Low fire temperatures would ensure lower mortality of above-ground saplings and minimal damage to root stocks of tree species that would maintain the regenerative capacity of a tropical dry forest subject to dry season wildfires.
Resumo:
Cantilevers made out of PECVD grown SiC films are reported here. The cantilevers were realized in two different methods isotropic etch (Dry release) and combination of wet etch and critical point dry release. The dry release process for Silicon isotropic etch results in excellent etch selectivity against SiC, to provide released structures. The optimized wet release process is able to overcome stiction issues to provide excellent SiC cantilevers.
Resumo:
Woody tree species in seasonally dry tropical forests are known to have traits that help them to recover from recurring disturbances such as fire. Two such traits are resprouting and rapid post-fire growth. We compared survival and growth rates of regenerating small-sized individuals (juveniles) of woody tree species after dry season fire (February-March) at eight adjacent pairs of burnt and unburnt transects in a seasonally dry tropical forest in southern India. Juveniles were monitored at 3-mo intervals between August 2009 and August 2010. High juvenile survivorship (>95%) was observed in both burnt and unburnt areas. Growth rates of juveniles, analyzed at the community level as well as for a few species individually (especially fast-growing ones), were distinctly higher in burnt areas compared to unburnt areas after a fire event, particularly during the pre-monsoon season immediately after a fire. Rapid growth by juveniles soon after a fire may be due to lowered competition from other vegetative forms such as grasses, possibly aided by the availability of resources stored belowground. Such an adaptation would allow a juvenile bank to be retained in the understory of a dry forest, from where individuals can grow to a possible fire-tolerant size during favorable conditions.
Resumo:
Hornbills, among the largest and most threatened tropical frugivores, provide important seed dispersal services. Hornbill nest site characteristics are known primarily from wet tropical forests. Nests of the Indian grey hornbill Ocyceros birostris and Oriental pied hornbill Anthracoceros albirostris were characterized in a tropical dry forest. Despite A. albirostris being twice the size of O. birostris, few of the nest cavity attributes were different. A. albirostris nests were surrounded by higher proportion of mixed forest and lower sal forest compared to O. birostris. In this landscape, the larger A. albirostris may prefer to nest in sites with more food plants compared to the smaller O. birostris.
Resumo:
Dry sliding wear behavior of epoxy matrix syntactic foams filled with 20, 40 and 60 wt% fly ash cenosphere is reported based on response surface methodology. Empirical models are constructed and validated based on analysis of variance. Results show that syntactic foams have higher wear resistance than the matrix resin. Among the parameters studied, the applied normal load (F) had a prominent effect on wear rate, specific wear rate (w(s)) and coefficient of friction (mu). With increasing F, the wear rate increased, whereas ws and mu decreased. With increase in filler content, the wear rate and w(s) decreased, while the mu increased. With increase in sliding velocity as well as sliding distance, the wear rate and ws show decreasing trends. Microscopy revealed broken cenospheres forming debris and extensive deformation marks on the wear surface. (C) 2015 Elsevier Ltd. All rights reserved.