114 resultados para Distribution network reconfiguration problem


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents the capability of the neural networks as a computational tool for solving constrained optimization problem, arising in routing algorithms for the present day communication networks. The application of neural networks in the optimum routing problem, in case of packet switched computer networks, where the goal is to minimize the average delays in the communication have been addressed. The effectiveness of neural network is shown by the results of simulation of a neural design to solve the shortest path problem. Simulation model of neural network is shown to be utilized in an optimum routing algorithm known as flow deviation algorithm. It is also shown that the model will enable the routing algorithm to be implemented in real time and also to be adaptive to changes in link costs and network topology. (C) 2002 Elsevier Science Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The specified range of free chlorine residual (between minimum and maximum) in water distribution systems needs to be maintained to avoid deterioration of the microbial quality of water, control taste and/or odor problems, and hinder formation of carcino-genic disinfection by-products. Multiple water quality sources for providing chlorine input are needed to maintain the chlorine residuals within a specified range throughout the distribution system. The determination of source dosage (i.e., chlorine concentrations/chlorine mass rates) at water quality sources to satisfy the above objective under dynamic conditions is a complex process. A nonlinear optimization problem is formulated to determine the chlorine dosage at the water quality sources subjected to minimum and maximum constraints on chlorine concentrations at all monitoring nodes. A genetic algorithm (GA) approach in which decision variables (chlorine dosage) are coded as binary strings is used to solve this highly nonlinear optimization problem, with nonlinearities arising due to set-point sources and non-first-order reactions. Application of the model is illustrated using three sample water distribution systems, and it indicates that the GA,is a useful tool for evaluating optimal water quality source chlorine schedules.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we outline an approach to the task of designing network codes in a non-multicast setting. Our approach makes use of the concept of interference alignment. As an example, we consider the distributed storage problem where the data is stored across the network in n nodes and where a data collector can recover the data by connecting to any k of the n nodes and where furthermore, upon failure of a node, a new node can replicate the data stored in the failed node while minimizing the repair bandwidth.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An analog minimum-variance unbiased estimator(MVUE) over an asymmetric wireless sensor network is studied.Minimisation of variance is cast into a constrained non-convex optimisation problem. An explicit algorithm that solves the problem is provided. The solution is obtained by decomposing the original problem into a finite number of convex optimisation problems with explicit solutions. These solutions are then juxtaposed together by exploiting further structure in the objective function.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The poor performance of TCP over multi-hop wireless networks is well known. In this paper we explore to what extent network coding can help to improve the throughput performance of TCP controlled bulk transfers over a chain topology multi-hop wireless network. The nodes use a CSMA/ CA mechanism, such as IEEE 802.11’s DCF, to perform distributed packet scheduling. The reverse flowing TCP ACKs are sought to be X-ORed with forward flowing TCP data packets. We find that, without any modification to theMAC protocol, the gain from network coding is negligible. The inherent coordination problem of carrier sensing based random access in multi-hop wireless networks dominates the performance. We provide a theoretical analysis that yields a throughput bound with network coding. We then propose a distributed modification of the IEEE 802.11 DCF, based on tuning the back-off mechanism using a feedback approach. Simulation studies show that the proposed mechanism when combined with network coding, improves the performance of a TCP session by more than 100%.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We consider a joint power control and transmission scheduling problem in wireless networks with average power constraints. While the capacity region of a wireless network is convex, a characterization of this region is a hard problem. We formulate a network utility optimization problem involving time-sharing across different "transmission modes," where each mode corresponds to the set of power levels used in the network. The structure of the optimal solution is a time-sharing across a small set of such modes. We use this structure to develop an efficient heuristic approach to finding a suboptimal solution through column generation iterations. This heuristic approach converges quite fast in simulations, and provides a tool for wireless network planning.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We consider a dense, ad hoc wireless network confined to a small region, such that direct communication is possible between any pair of nodes. The physical communication model is that a receiver decodes the signal from a single transmitter, while treating all other signals as interference. Data packets are sent between source-destination pairs by multihop relaying. We assume that nodes self-organise into a multihop network such that all hops are of length d meters, where d is a design parameter. There is a contention based multiaccess scheme, and it is assumed that every node always has data to send, either originated from it or a transit packet (saturation assumption). In this scenario, we seek to maximize a measure of the transport capacity of the network (measured in bit-meters per second) over power controls (in a fading environment) and over the hop distance d, subject to an average power constraint. We first argue that for a dense collection of nodes confined to a small region, single cell operation is efficient for single user decoding transceivers. Then, operating the dense ad hoc network (described above) as a single cell, we study the optimal hop length and power control that maximizes the transport capacity for a given network power constraint. More specifically, for a fading channel and for a fixed transmission time strategy (akin to the IEEE 802.11 TXOP), we find that there exists an intrinsic aggregate bit rate (Thetaopt bits per second, depending on the contention mechanism and the channel fading characteristics) carried by the network, when operating at the optimal hop length and power control. The optimal transport capacity is of the form dopt(Pmacrt) x Thetaopt with dopt scaling as Pmacrt 1 /eta, where Pmacrt is the available time average transmit power and eta is the path loss exponent. Under certain conditions on the fading distribution, we then pro- - vide a simple characterisation of the optimal operating point.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We consider the classical problem of sequential detection of change in a distribution (from hypothesis 0 to hypothesis 1), where the fusion centre receives vectors of periodic measurements, with the measurements being i.i.d. over time and across the vector components, under each of the two hypotheses. In our problem, the sensor devices ("motes") that generate the measurements constitute an ad hoc wireless network. The motes contend using a random access protocol (such as CSMA/CA) to transmit their measurement packets to the fusion centre. The fusion centre waits for vectors of measurements to accumulate before taking decisions. We formulate the optimal detection problem, taking into account the network delay experienced by the vectors of measurements, and find that, under periodic sampling, the detection delay decouples into network delay and decision delay. We obtain a lower bound on the network delay, and propose a censoring scheme, where lagging sensors drop their delayed observations in order to mitigate network delay. We show that this scheme can achieve the lower bound. This approach is explored via simulation. We also use numerical evaluation and simulation to study issues such as: the optimal sampling rate for a given number of sensors, and the optimal number of sensors for a given measurement rate

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we consider the problem of association of wireless stations (STAs) with an access network served by a wireless local area network (WLAN) and a 3G cellular network. There is a set of WLAN Access Points (APs) and a set of 3G Base Stations (BSs) and a number of STAs each of which needs to be associated with one of the APs or one of the BSs. We concentrate on downlink bulk elastic transfers. Each association provides each ST with a certain transfer rate. We evaluate an association on the basis of the sum log utility of the transfer rates and seek the utility maximizing association. We also obtain the optimal time scheduling of service from a 3G BS to the associated STAs. We propose a fast iterative heuristic algorithm to compute an association. Numerical results show that our algorithm converges in a few steps yielding an association that is within 1% (in objective value) of the optimal (obtained through exhaustive search); in most cases the algorithm yields an optimal solution.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In a dense multi-hop network of mobile nodes capable of applying adaptive power control, we consider the problem of finding the optimal hop distance that maximizes a certain throughput measure in bit-metres/sec, subject to average network power constraints. The mobility of nodes is restricted to a circular periphery area centered at the nominal location of nodes. We incorporate only randomly varying path-loss characteristics of channel gain due to the random motion of nodes, excluding any multi-path fading or shadowing effects. Computation of the throughput metric in such a scenario leads us to compute the probability density function of random distance between points in two circles. Using numerical analysis we discover that choosing the nearest node as next hop is not always optimal. Optimal throughput performance is also attained at non-trivial hop distances depending on the available average network power.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In a typical sensor network scenario a goal is to monitor a spatio-temporal process through a number of inexpensive sensing nodes, the key parameter being the fidelity at which the process has to be estimated at distant locations. We study such a scenario in which multiple encoders transmit their correlated data at finite rates to a distant and common decoder. In particular, we derive inner and outer bounds on the rate region for the random field to be estimated with a given mean distortion.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Problems related to network coding for acyclic, instantaneous networks (where the edges of the acyclic graph representing the network are assumed to have zero-delay) have been extensively dealt with in the recent past. The most prominent of these problems include (a) the existence of network codes that achieve maximum rate of transmission, (b) efficient network code constructions, and (c) field size issues. In practice, however, networks have transmission delays. In network coding theory, such networks with transmission delays are generally abstracted by assuming that their edges have integer delays. Using enough memory at the nodes of an acyclic network with integer delays can effectively simulate instantaneous behavior, which is probably why only acyclic instantaneous networks have been primarily focused on thus far. However, nulling the effect of the network delays are not always uniformly advantageous, as we will show in this work. Essentially, we elaborate on issues ((a), (b) and (c) above) related to network coding for acyclic networks with integer delays, and show that using the delay network as is (without adding memory) turns out to be advantageous, disadvantageous or immaterial, depending on the topology of the network and the problem considered i.e., (a), (b) or (c).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper deals with the solution to the problem of multisensor data fusion for a single target scenario as detected by an airborne track-while-scan radar. The details of a neural network implementation, various training algorithms based on standard backpropagation, and the results of training and testing the neural network are presented. The promising capabilities of RPROP algorithm for multisensor data fusion for various parameters are shown in comparison to other adaptive techniques

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The development of a neural network based power system damping controller (PSDC) for a static Var compensator (SVC), designed to enhance the damping characteristics of a power system network representing a part of the Electricity Generating Authority of Thailand (EGAT) system is presented. The proposed stabilising controller scheme of the SVC consists of a neuro-identifier and a neuro-controller which have been developed based on a functional link network (FLN) model. A recursive online training algorithm has been utilised to train the two networks. The simulation results have been obtained under various operating conditions and disturbance cases to show that the proposed stabilising controller can provide a better damping to the low frequency oscillations, as compared to the conventional controllers. The effectiveness of the proposed stabilising controller has also been compared with a conventional power system stabiliser provided in the generator excitation system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Electric power utilities are installing distribution automation systems (DAS) for better management and control of the distribution networks during the recent past. The success of DAS, largely depends on the availability of reliable database of the control centre and thus requires an efficient state estimation (SE) solution technique. This paper presents an efficient and robust three-phase SE algorithm for application to radial distribution networks. This method exploits the radial nature of the network and uses forward and backward propagation scheme to estimate the line flows, node voltage and loads at each node, based on the measured quantities. The SE cannot be executed without adequate number of measurements. The extension of the method to the network observability analysis and bad data detection is also discussed. The proposed method has been tested to analyze several practical distribution networks of various voltage levels and also having high R:X ratio of lines. The results for a typical network are presented for illustration purposes. © 2000 Elsevier Science S.A. All rights reserved.