78 resultados para Directional sensor networks
Resumo:
We develop an approximate analytical technique for evaluating the performance of multi-hop networks based on beaconless IEEE 802.15.4 ( the ``ZigBee'' PHY and MAC), a popular standard for wireless sensor networks. The network comprises sensor nodes, which generate measurement packets, relay nodes which only forward packets, and a data sink (base station). We consider a detailed stochastic process at each node, and analyse this process taking into account the interaction with neighbouring nodes via certain time averaged unknown variables (e.g., channel sensing rates, collision probabilities, etc.). By coupling the analyses at various nodes, we obtain fixed point equations that can be solved numerically to obtain the unknown variables, thereby yielding approximations of time average performance measures, such as packet discard probabilities and average queueing delays. The model incorporates packet generation at the sensor nodes and queues at the sensor nodes and relay nodes. We demonstrate the accuracy of our model by an extensive comparison with simulations. As an additional assessment of the accuracy of the model, we utilize it in an algorithm for sensor network design with quality-of-service (QoS) objectives, and show that designs obtained using our model actually satisfy the QoS constraints (as validated by simulating the networks), and the predictions are accurate to well within 10% as compared to the simulation results in a regime where the packet discard probability is low. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
We propose a simple and energy efficient distributed change detection scheme for sensor networks based on Page's parametric CUSUM algorithm. The sensor observations are IID over time and across the sensors conditioned on the change variable. Each sensor runs CUSUM and transmits only when the CUSUM is above some threshold. The transmissions from the sensors are fused at the physical layer. The channel is modeled as a multiple access channel (MAC) corrupted with IID noise. The fusion center which is the global decision maker, performs another CUSUM to detect the change. We provide the analysis and simulation results for our scheme and compare the performance with an existing scheme which ensures energy efficiency via optimal power selection.
Resumo:
A Wireless Sensor Network (WSN) powered using harvested energies is limited in its operation by instantaneous power. Since energy availability can be different across nodes in the network, network setup and collaboration is a non trivial task. At the same time, in the event of excess energy, exciting node collaboration possibilities exist; often not feasible with battery driven sensor networks. Operations such as sensing, computation, storage and communication are required to achieve the common goal for any sensor network. In this paper, we design and implement a smart application that uses a Decision Engine, and morphs itself into an energy matched application. The results are based on measurements using IRIS motes running on solar energy. We have done away with batteries; instead used low leakage super capacitors to store harvested energy. The Decision Engine utilizes two pieces of data to provide its recommendations. Firstly, a history based energy prediction model assists the engine with information about in-coming energy. The second input is the energy cost database for operations. The energy driven Decision Engine calculates the energy budgets and recommends the best possible set of operations. Under excess energy condition, the Decision Engine, promiscuously sniffs the neighborhood looking for all possible data from neighbors. This data includes neighbor's energy level and sensor data. Equipped with this data, nodes establish detailed data correlation and thus enhance collaboration such as filling up data gaps on behalf of nodes hibernating under low energy conditions. The results are encouraging. Node and network life time of the sensor nodes running the smart application is found to be significantly higher compared to the base application.
Resumo:
We propose partial and full link reversal algorithms to bypass voids during geographic routing over duty-cycled wireless sensor networks. We propose a distributed approach that is oblivious to one-hop neighbor information. Upon termination of the algorithm, the resulting network is guaranteed to be destination-oriented. Further, to reduce the delays incurred under reactive link reversal, we propose the use of `pseudo-events', a preemptive link reversal strategy, that renders the network destination-oriented before the onset of a real event. A simulation study of the effectiveness of pseudo-events is also provided.
Resumo:
This paper addresses the problem of how to select the optimal number of sensors and how to determine their placement in a given monitored area for multimedia surveillance systems. We propose to solve this problem by obtaining a novel performance metric in terms of a probability measure for accomplishing the task as a function of set of sensors and their placement. This measure is then used to find the optimal set. The same measure can be used to analyze the degradation in system 's performance with respect to the failure of various sensors. We also build a surveillance system using the optimal set of sensors obtained based on the proposed design methodology. Experimental results show the effectiveness of the proposed design methodology in selecting the optimal set of sensors and their placement.
Resumo:
We consider nonparametric or universal sequential hypothesis testing when the distribution under the null hypothesis is fully known but the alternate hypothesis corresponds to some other unknown distribution. These algorithms are primarily motivated from spectrum sensing in Cognitive Radios and intruder detection in wireless sensor networks. We use easily implementable universal lossless source codes to propose simple algorithms for such a setup. The algorithms are first proposed for discrete alphabet. Their performance and asymptotic properties are studied theoretically. Later these are extended to continuous alphabets. Their performance with two well known universal source codes, Lempel-Ziv code and KT-estimator with Arithmetic Encoder are compared. These algorithms are also compared with the tests using various other nonparametric estimators. Finally a decentralized version utilizing spatial diversity is also proposed and analysed.
Resumo:
Energy harvesting sensor (EHS) nodes provide an attractive and green solution to the problem of limited lifetime of wireless sensor networks (WSNs). Unlike a conventional node that uses a non-rechargeable battery and dies once it runs out of energy, an EHS node can harvest energy from the environment and replenish its rechargeable battery. We consider hybrid WSNs that comprise of both EHS and conventional nodes; these arise when legacy WSNs are upgraded or due to EHS deployment cost issues. We compare conventional and hybrid WSNs on the basis of a new and insightful performance metric called k-outage duration, which captures the inability of the nodes to transmit data either due to lack of sufficient battery energy or wireless fading. The metric overcomes the problem of defining lifetime in networks with EHS nodes, which never die but are occasionally unable to transmit due to lack of sufficient battery energy. It also accounts for the effect of wireless channel fading on the ability of the WSN to transmit data. We develop two novel, tight, and computationally simple bounds for evaluating the k-outage duration. Our results show that increasing the number of EHS nodes has a markedly different effect on the k-outage duration than increasing the number of conventional nodes.
Resumo:
In wireless sensor networks (WSNs) the communication traffic is often time and space correlated, where multiple nodes in a proximity start transmitting at the same time. Such a situation is known as spatially correlated contention. The random access methods to resolve such contention suffers from high collision rate, whereas the traditional distributed TDMA scheduling techniques primarily try to improve the network capacity by reducing the schedule length. Usually, the situation of spatially correlated contention persists only for a short duration and therefore generating an optimal or sub-optimal schedule is not very useful. On the other hand, if the algorithm takes very large time to schedule, it will not only introduce additional delay in the data transfer but also consume more energy. To efficiently handle the spatially correlated contention in WSNs, we present a distributed TDMA slot scheduling algorithm, called DTSS algorithm. The DTSS algorithm is designed with the primary objective of reducing the time required to perform scheduling, while restricting the schedule length to maximum degree of interference graph. The algorithm uses randomized TDMA channel access as the mechanism to transmit protocol messages, which bounds the message delay and therefore reduces the time required to get a feasible schedule. The DTSS algorithm supports unicast, multicast and broadcast scheduling, simultaneously without any modification in the protocol. The protocol has been simulated using Castalia simulator to evaluate the run time performance. Simulation results show that our protocol is able to considerably reduce the time required to schedule.
Resumo:
Following rising demands in positioning with GPS, low-cost receivers are becoming widely available; but their energy demands are still too high. For energy efficient GPS sensing in delay-tolerant applications, the possibility of offloading a few milliseconds of raw signal samples and leveraging the greater processing power of the cloud for obtaining a position fix is being actively investigated. In an attempt to reduce the energy cost of this data offloading operation, we propose Sparse-GPS(1): a new computing framework for GPS acquisition via sparse approximation. Within the framework, GPS signals can be efficiently compressed by random ensembles. The sparse acquisition information, pertaining to the visible satellites that are embedded within these limited measurements, can subsequently be recovered by our proposed representation dictionary. By extensive empirical evaluations, we demonstrate the acquisition quality and energy gains of Sparse-GPS. We show that it is twice as energy efficient than offloading uncompressed data, and has 5-10 times lower energy costs than standalone GPS; with a median positioning accuracy of 40 m.
Resumo:
Clock synchronization in wireless sensor networks (WSNs) assures that sensor nodes have the same reference clock time. This is necessary not only for various WSN applications but also for many system level protocols for WSNs such as MAC protocols, and protocols for sleep scheduling of sensor nodes. Clock value of a node at a particular instant of time depends on its initial value and the frequency of the crystal oscillator used in the sensor node. The frequency of the crystal oscillator varies from node to node, and may also change over time depending upon many factors like temperature, humidity, etc. As a result, clock values of different sensor nodes diverge from each other and also from the real time clock, and hence, there is a requirement for clock synchronization in WSNs. Consequently, many clock synchronization protocols for WSNs have been proposed in the recent past. These protocols differ from each other considerably, and so, there is a need to understand them using a common platform. Towards this goal, this survey paper categorizes the features of clock synchronization protocols for WSNs into three types, viz, structural features, technical features, and global objective features. Each of these categories has different options to further segregate the features for better understanding. The features of clock synchronization protocols that have been used in this survey include all the features which have been used in existing surveys as well as new features such as how the clock value is propagated, when the clock value is propagated, and when the physical clock is updated, which are required for better understanding of the clock synchronization protocols in WSNs in a systematic way. This paper also gives a brief description of a few basic clock synchronization protocols for WSNs, and shows how these protocols fit into the above classification criteria. In addition, the recent clock synchronization protocols for WSNs, which are based on the above basic clock synchronization protocols, are also given alongside the corresponding basic clock synchronization protocols. Indeed, the proposed model for characterizing the clock synchronization protocols in WSNs can be used not only for analyzing the existing protocols but also for designing new clock synchronization protocols. (C) 2014 Elsevier B.V. All rights reserved.
Quick, Decentralized, Energy-Efficient One-Shot Max Function Computation Using Timer-Based Selection
Resumo:
In several wireless sensor networks, it is of interest to determine the maximum of the sensor readings and identify the sensor responsible for it. We propose a novel, decentralized, scalable, energy-efficient, timer-based, one-shot max function computation (TMC) algorithm. In it, the sensor nodes do not transmit their readings in a centrally pre-defined sequence. Instead, the nodes are grouped into clusters, and computation occurs over two contention stages. First, the nodes in each cluster contend with each other using the timer scheme to transmit their reading to their cluster-heads. Thereafter, the cluster-heads use the timer scheme to transmit the highest sensor reading in their cluster to the fusion node. One new challenge is that the use of the timer scheme leads to collisions, which can make the algorithm fail. We optimize the algorithm to minimize the average time required to determine the maximum subject to a constraint on the probability that it fails to find the maximum. TMC significantly lowers average function computation time, average number of transmissions, and average energy consumption compared to approaches proposed in the literature.
Resumo:
Large variations in human actions lead to major challenges in computer vision research. Several algorithms are designed to solve the challenges. Algorithms that stand apart, help in solving the challenge in addition to performing faster and efficient manner. In this paper, we propose a human cognition inspired projection based learning for person-independent human action recognition in the H.264/AVC compressed domain and demonstrate a PBL-McRBEN based approach to help take the machine learning algorithms to the next level. Here, we use gradient image based feature extraction process where the motion vectors and quantization parameters are extracted and these are studied temporally to form several Group of Pictures (GoP). The GoP is then considered individually for two different bench mark data sets and the results are classified using person independent human action recognition. The functional relationship is studied using Projection Based Learning algorithm of the Meta-cognitive Radial Basis Function Network (PBL-McRBFN) which has a cognitive and meta-cognitive component. The cognitive component is a radial basis function network while the Meta-Cognitive Component(MCC) employs self regulation. The McC emulates human cognition like learning to achieve better performance. Performance of the proposed approach can handle sparse information in compressed video domain and provides more accuracy than other pixel domain counterparts. Performance of the feature extraction process achieved more than 90% accuracy using the PTIL-McRBFN which catalyzes the speed of the proposed high speed action recognition algorithm. We have conducted twenty random trials to find the performance in GoP. The results are also compared with other well known classifiers in machine learning literature.
Resumo:
We propose to develop a 3-D optical flow features based human action recognition system. Optical flow based features are employed here since they can capture the apparent movement in object, by design. Moreover, they can represent information hierarchically from local pixel level to global object level. In this work, 3-D optical flow based features a re extracted by combining the 2-1) optical flow based features with the depth flow features obtained from depth camera. In order to develop an action recognition system, we employ a Meta-Cognitive Neuro-Fuzzy Inference System (McFIS). The m of McFIS is to find the decision boundary separating different classes based on their respective optical flow based features. McFIS consists of a neuro-fuzzy inference system (cognitive component) and a self-regulatory learning mechanism (meta-cognitive component). During the supervised learning, self-regulatory learning mechanism monitors the knowledge of the current sample with respect to the existing knowledge in the network and controls the learning by deciding on sample deletion, sample learning or sample reserve strategies. The performance of the proposed action recognition system was evaluated on a proprietary data set consisting of eight subjects. The performance evaluation with standard support vector machine classifier and extreme learning machine indicates improved performance of McFIS is recognizing actions based of 3-D optical flow based features.
Resumo:
Facial emotions are the most expressive way to display emotions. Many algorithms have been proposed which employ a particular set of people (usually a database) to both train and test their model. This paper focuses on the challenging task of database independent emotion recognition, which is a generalized case of subject-independent emotion recognition. The emotion recognition system employed in this work is a Meta-Cognitive Neuro-Fuzzy Inference System (McFIS). McFIS has two components, a neuro-fuzzy inference system, which is the cognitive component and a self-regulatory learning mechanism, which is the meta-cognitive component. The meta-cognitive component, monitors the knowledge in the neuro-fuzzy inference system and decides on what-to-learn, when-to-learn and how-to-learn the training samples, efficiently. For each sample, the McFIS decides whether to delete the sample without being learnt, use it to add/prune or update the network parameter or reserve it for future use. This helps the network avoid over-training and as a result improve its generalization performance over untrained databases. In this study, we extract pixel based emotion features from well-known (Japanese Female Facial Expression) JAFFE and (Taiwanese Female Expression Image) TFEID database. Two sets of experiment are conducted. First, we study the individual performance of both databases on McFIS based on 5-fold cross validation study. Next, in order to study the generalization performance, McFIS trained on JAFFE database is tested on TFEID and vice-versa. The performance The performance comparison in both experiments against SVNI classifier gives promising results.
Resumo:
Action recognition plays an important role in various applications, including smart homes and personal assistive robotics. In this paper, we propose an algorithm for recognizing human actions using motion capture action data. Motion capture data provides accurate three dimensional positions of joints which constitute the human skeleton. We model the movement of the skeletal joints temporally in order to classify the action. The skeleton in each frame of an action sequence is represented as a 129 dimensional vector, of which each component is a 31) angle made by each joint with a fixed point on the skeleton. Finally, the video is represented as a histogram over a codebook obtained from all action sequences. Along with this, the temporal variance of the skeletal joints is used as additional feature. The actions are classified using Meta-Cognitive Radial Basis Function Network (McRBFN) and its Projection Based Learning (PBL) algorithm. We achieve over 97% recognition accuracy on the widely used Berkeley Multimodal Human Action Database (MHAD).