295 resultados para Dielectric permittivities


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Antiferroelectric lead zirconate thin films were deposited using KrF (248 nm) excimer laser ablation technique. Utilization of antiferroelectric materials is proposed in high charge storage capacitors and microelectromechanical (MEMs) devices. The antiferroelectric nature of lead zirconate thin films was confirmed by the presence of double hysteresis behavior in polarization versus applied field response. By controlling the processing parameters, two types of microstructures evolved, namely columnar (or in-situ) and multi-grained (or ex-situ) in PZ thin films. The dielectric and electrical properties of the lead zirconate thin films were studied with respect to the processing parameters. Analysis on charge transport mechanism, using space charge limited conduction phenomenon, showed the presence of both shallow and deep trap sites in the PZ thin films. The estimated shallow trap energies were 0.448 and 0.491 eV for in-situ and ex-situ films, with respective concentrations of approximate to 7.9 x 10(18)/cc and approximate to 2.97 x 10(18)/cc. The deep trap energies with concentrations were 1.83 eV with 1.4 x 10(16)/cc for ex-situ and 1.76 eV with 3.8 x 10(16)/cc for in-situ PZ thin films, respectively. These activation energies were found to be consistent with the analysis from Arrhenius plots of de current densities. (C) 2000 Elsevier Science S.A. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The dielectric response of pulsed laser ablated barium strontium titanate thin films were studied as a function of frequency and ambient temperature (from room temperature to 320 degrees C) by employing impedance spectroscopy. Combined modulus and impedance spectroscopic plots were used to study the response of the film, which in general may contain the grain, grain boundary, and the electrode/film interface as capacitive elements. The spectroscopic plots revealed that the major response was due to the grains, while contributions from the grain boundary or the electrode/film interface was negligible. Further observation from the complex impedance plot showed data points lying on a single semicircle, implying the response originated from a single capacitive element corresponding to the bulk grains. Conductivity plots against frequency at different temperatures suggested a response obeying the 'universal power law'. The value of the activation energies computed from the Arrhenius plots of both ac and dc conductivities with 1000/T were 0.97 and 1.04 eV, respectively. This was found to be in excellent agreement with published literature, and was attributed to the motion of oxygen vacancies within the bulk. (C) 2000 American Institute of Physics. [S0021-8979(00)02801-2].

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a report of our analysis of wave vector dependence of the static dielectric function of a dipolar liquid obtained by a microscopic calculation. At low values of the wave vector (k), the longitudinal dielectric function ϵ(k) increases with k, in contradiction to some assumptions reported in the literature. As the value of k is increased, ϵ(k) diverges at a critical value kc which depends on the value of the long wavelength static dielectric constant (ϵ0) of the liquid. The dielectric function is negative for values of k greater than kc. At large values of k, the calculated ϵ(k) fails to attain the limiting value of unity. We attribute this result to the failure of the point dipole assumption made in the evaluation of the polarization correlation function required by the theory. The behavior of ϵ(k) for the dipolar liquid is compared with that of one component plasma for which reliable results can be obtained over the full range of wave vectors. For both systems, the stability conditions are fulfilled at all values of k. A plausible explanation of this rather exotic behavior of ϵ(k) is given.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The phase equilibrium studies of organic system, involving resorcinol (R) and p-dimethylaminobenzaldehyde (DMAB), reveal the formation of a 1:1 molecular complex with two eutectics. The heat of mixing, entropy of fusion, roughness parameter, interfacial energy, and the excess thermodynamic functions were calculated based on enthalpy of fusion data determined via differential scanning calorimetric (DSC) method. X-ray powder diffraction studies confirm that the eutectics are not simple mechanical mixture of the components under investigation. The spectroscopic investigations (IR and NMR) suggest the occurrence of hydrogen bonding between the components forming the molecular complex. The dielectric measurements, carried out on hot-pressed addition compound (molecular complex), show higher dielectric constant at 320 K than that of individual components. The microstructural investigations of eutectic and addition compound indicate dendritic and faceted morphological features. (C) 2000 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Glasses obtained from quenching melts of superconducting bismuth cuprates of the formula Bi2(Ca,Sr)n+1CunO2n+4 with n=1 and 3 exhibit novel dielectric properties. They possess relatively high dielectric constants as well as high electrical conductivity. The novel dielectric properties of these cuprate glasses are likely to be of electronic origin. They exhibit a weak microwave absorption due to the presence of microcrystallites.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A unified treatment of polarization relaxation, dielectric dispersion and solvation dynamics in a dense, dipolar liquid is presented. It is shown that the information of solvent polarization relaxation that is obtained by macroscopic dielectric dispersion experiments is not sufficient to understand dynamics of solvation of a newly created ion or dipole. In solvation, a significant contribution comes from intermediate wave vector processes which depend critically on the short range (nearest‐neighbor) spatial and orientational order that are present in a dense, dipolar liquid. An analytic expression is obtained for the time dependent solvation energy that depends, in addition to the translational and rotational diffusion coefficients of the liquid, on the ratio of solute–solvent molecular sizes and on the microscopic structure of the polar liquid. Mean spherical approximation (MSA) theory is used to obtain numerical results for polarization relaxation, for wave vector and frequency dependent dielectric function and for time dependent solvation energy. We find that in the absence of translational contribution, the solvation of an ion is, in general, nonexponential. In this case, the short time decay is dominated by the longitudinal relaxation time but the long time decay is dominated by much slower large wave vector processes involving nearest‐neighbor molecules. The presence of a significant translational contribution drastically alters the decay behavior. Now, the long‐time behavior is given by the longitudinal relaxation time constant and the short time dynamics is controlled by the large wave vector processes. Thus, although the continuum model itself is conceptually wrong, a continuum model like result is recovered in the presence of a sizeable translational contribution. The continuum model result is also recovered in the limit of large solute to solvent size ratio. In the opposite limit of small solute size, the decay is markedly nonexponential (if the translational contribution is not very large) and a complete breakdown of the continuum model takes place. The significance of these results is discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The electrical capacitance and resistance of the binary liquid mixture cyclohexane + acetonitrile are measured in the one phase and two phase regions at spot frequencies between 5 kHz and 100 kHz. This sample has a very low gravity affected (∼0.6 mK) region. In one phase region the capacitance data show a sharp, ∼0.7% increase above background within 0.5 degrees of Tc whereas the resistance has a smooth increase of ∼1.5% above background in a (T−Tc) range of 4 degrees. Two phase values of capacitance and resistance from the coexisting phases are used to determine the critical parameters Tc (critical temperature), Rc (resistance at Tc) and Cc (capacitance at Tc). A precise knowledge of these parameters reduces the uncertainty on the critical exponent 0 for C and R. The one phase capacitance data fit to an (1 - α) exponent in a limited temperature range of 0.2 degrees. Resistance data strongly support an (1 - α) exponent over the entire 5 degree range.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Oxides of the families Ba3ZnTa2-xNbxO9 and Ba3MgTa2-xNbxO9 were obtained by the solid state reaction route at 1573 K and were found to crystallize in the disordered (cubic) perovskite structure. In Ba3ZnTa2-xNbXO9 and Ba3MgTa2-xNbxO9 the entire range (0 less than or equal to x less than or equal to 1) of solid solutions could be synthesized. The dielectric constant decreases with increase in frequency for all compositions in the range 40 Hz to 100 kHz (epsilon (r) varies from 16 to 22). The dielectric loss (D) shows a broad maximum for both Ba3ZnTa2-xNbxO9 and Ba3MgTa2-xNbxO9. The maxima is centered around 2 kHz in the former and near 10 kHz in the latter. (C) 2001 Elsevier Science Ltd. All sights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The dielectric behavior of some powdered polycrystalline samples has been studied in the frequency range of 200 Hz–100 kHz. It is shown that the dielectric behavior in these systems below the Curie temperature is not purely relaxational in its character and cannot be described by any of the models of the dielectric relaxation hitherto put forward. It is also shown that ‘‘isolation’’ of the particles in the powder samples plays a very important role. The origin of this abnormality is thought to be due to the mechanical resonance arising out of the magnetostrictive property of the material.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Li-doped ZnO thin films (Zn1-xLixO, x=0.05-0.15) were grown by pulsed-laser ablation technique. Highly c-axis-oriented films were obtained at a growth temperature of 500 degrees C. Ferroelectricity in Zn1-xLixO was found from the temperature-dependent dielectric constant and from the polarization hysteresis loop. The transition temperature (T-c) varied from 290 to 330 K as the Li concentration increased from 0.05 to 0.15. It was found that the maximum value of the dielectric constant at T-c is a function of Li concentration. A symmetric increase in memory window with the applied gate voltage is observed for the ferroelectric thin films on a p-type Si substrate. A ferroelectric P-E hysteresis loop was observed for all the compositions. The spontaneous polarization (P-s) and coercive field (E-c) of 0.6 mu C/cm(2) and 45 kV/cm were obtained for Zn0.85Li0.15O thin films. These observations reveal that partial replacement of host Zn by Li ions induces a ferroelectric phase in the wurtzite-ZnO semiconductor. The dc transport studies revealed an Ohmic behavior in the lower-voltage region and space-charge-limited conduction prevailed at higher voltages. The optical constants were evaluated from the transmission spectrum and it was found that Li substitution in ZnO enhances the dielectric constant.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Phase-pure samples of barium magnesiotitanate, BaMg6Ti6O19 (BMT) are prepared by the wet chemical `gel-carbonate' method wherein the formation of BMT is complete below 950 degrees C as a result of the reaction between nanoparticles of BaCO3, MgO and TiO2. BMT powders are sintered at 1350-1450 C to dense ceramics. Extensive melting is noticed when the bulk composition falls between 0.4MgTiO(3)+0.6BaTiO(3)) and (0.6MgTiO(3)+0.4BaTiO(3)) along the MgTiO3-BaTiO3 tie-line in BaO-MgO-TiO2, phase diagram. Dielectric properties of sintered (BMT) ceramics have been investigated which showed epsilon similar or equal to 39 at 2 GHz, quality factor Q >= 10,000 and positive temperature coefficient of dielectric constant around 370 ppm degrees C-1.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Monophasic Na0.5La0.5Bi4Ti4O15 powders were synthesized via the conventional solid-state reaction route. The X-ray powder diffraction (XRD), selected area electron diffraction (SAED) and high resolution transmission electron microscopy (HRTEM) studies carried out on the as synthesized powdered samples confirmed the phase to be a four-layer Aurivillius that crystallizes in an orthorhombic A2(1)am space group. The microstructure and the chemical composition of the sintered sample were examined by scanning electron microscope (SEM) equipped with an energy dispersive X-ray analyzer (EDX). The dielectric properties of the ceramics have been studied in the 27-700 degrees C temperature range at various frequencies (100 Hz to 1 MHz). A sharp dielectric anomaly was observed at 580 degrees C for all the frequencies corresponding to the ferroelectric to paraelectric phase transition. Saturated ferroelectric hysteresis loops were observed at 200 degrees C and the associated remnant polarization (P-r) and coercive field (E-c) were found to be 7.4 mu C/cm(2) and 34.8 kV/cm, respectively. AC conductivity analysis confirmed the existence of two different conduction mechanisms in the ferroelectric region. Activation energies calculated from the Arrhenius plots were similar to 0.24 eV and similar to 0.84 eV in the 300-450 degrees C and 450-580 degrees C temperature ranges, respectively. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report a method for the deposition of thin films and thick coatings of metal oxides through the liquid medium, involving the micro waveirradiation of a solution of a metal-organic complex in a suitable dielectric solvent. The process is a combination of sol-gel and dip-coating methods, wherein coatings can be obtained on nonconducting and semiconducting substrates, within a few minutes. Thin films of nanostructured ZnO (wurtzite) have been obtained on Si(100), glass and polymer substrates, the nanostructure determined by process parameters The coatings are strongly adherent and uniform over 15 mm x 15 mm, the growth rate similar to 0.25 mu m/min Coatings of nanocrystalline Fe2O3 and Ga2O3 have also been obtained The method is scalable to larger substrates, and is promising as a low temperature technique for coating dielectric substrates, including flexible polymers. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction The alum family of double salts with the general formula M1+M3+(RO4)2.12H2O where M1+ is a monovalent ion (M1+ = K, Rb, Cs, Tl, NH4, CH3NH3, NH3OH3 NH3NH2, etc.) and M3+ is a trivalent metal such as Al, Fe, Cr, V, In, Ga, etc. and R is S or Se, form an isomorphous series and their general features indicate a common cubic space group Pa3. Lipson1 showed subsequently that there exist three different structure types agr, β and γ and the structure of a particular alum is dependent on the radius of the monovalent atom. The agr structure is typical of medium sized ions, the β of the larger ones and the γ of the small Na atom.2 Ferroelectricity has been reported only in alums containing NH4, CH3NH3, NH3NH3 and NH3OH. Their hindered rotations as well as the influence of sulphate group disorder on the dielectric behaviour of alums is still not clear.3 No study of the temperature dependence of the low frequency dielectric constant of some of the alums, particularly those of Cs, Rb and Tl, have been made so The present investigation was undertaken to correlate their dielectric behaviour with their composition and structural differences. Under the same experimental conditions, methyl ammonium and ammonium alums also were studied and compared with the known data.