81 resultados para DEFICIENT RATS
Resumo:
Objective: This study was undertaken to evaluate the neuroprotective activity of Wedelia calendulacea against cerebral ischemia/reperfusion induced oxidative stress in the rats. Materials and Methods: The global cerebral ischemia was induced in male albino Wistar rats by occluding the bilateral carotid arteries for 30 min followed by 1 h and 4 h reperfusion. At various times of reperfusion, the histopathological changes and the levels of malondialdehyde (MDA), glutathione peroxidase (GPx), glutathione reductase (GR), glutathione-s-transferase (GST), and hydrogen peroxide (H(2)O(2)) activity and brain water content were measured. Results: The ischemic changes were preceded by increase in concentration of MDA, hydrogen peroxide and followed by decreased GPx, GR, and GST activity. Treatment with W. calendulacea significantly attenuated ischemia-induced oxidative stress. W. calendulacea administration markedly reversed and restored to near normal level in the groups pre-treated with methanolic extract (250 and 500 mg/kg, given orally in single and double dose/day for 10 days) in dose-dependent way. Similarly, W. calendulacea reversed the brain water content in the ischemia reperfusion animals. The neurodegenaration also conformed by the histopathological changes in the cerebral-ischemic animals. Conclusion: The findings from the present investigation reveal that W. calendulacea protects neurons from global cerebral-ischemic injury in rat by attenuating oxidative stress.
Resumo:
The present study was to investigate the effect of W. calendulacea on ischemia and reperfusion-induced cerebral injury. Cerebral ischemia was induced by occluding right and left common carotid arteries (global cerebral ischemia) for 30 min followed by reperfusion for 1 h and 4 h individually. Various biochemical alterations, produced subsequent to the application of bilateral carotid artery occlusion (BCAO) followed by reperfusion viz. increase in lipid peroxidation (LPO), hydrogen peroxide (H(2)O(2)), and decrease in reduced glutathione (GSH), catalase (CAT) and superoxide dismutase (SOD), level in the brain tissue, Western blot analysis (Cu-Zn-SOD and CAT) and assessment of cerebral infarct size were measured. All those enzymes are markedly reversed and restored to near normal level in the groups pre-treated with W. calendulacea (250 and 500 mg/kg given orally in single and double dose/day for 10 days) in dose-dependent way. The effect of W. calendulacea had increased significantly the protein expression of copper/zinc superoxide dismutase (Cu-Zn-SOD) and CAT in cerebral ischemia. W. claendulacea was markedly decrease cerebral infarct damages but results are not statistically significant. It can be concluded that W. calendulacea possesses a neuroprotective activity against cerebral ischemia in rat.
Resumo:
We have identified a methanol- and biotin-starvation-inducible zinc finger protein named ROP [repressor of phosphoenolpyruvate carboxykinase (PEPCK)] in the methylotrophic yeast Pichia pastoris. When P. pastoris strain GS115 (wild-type, WT) is cultured in biotin-deficient, glucose-ammonium (Bio(-)) medium, growth is suppressed due to the inhibition of anaplerotic synthesis of oxaloacetate, catalysed by the biotin-dependent enzyme pyruvate carboxylase (PC). Deletion of ROP results in a strain (Delta ROP) that can grow under biotin-deficient conditions due to derepression of a biotin- and PC-independent pathway of anaplerotic synthesis of oxaloacetate. Northern analysis as well as microarray expression profiling of RNA isolated from WT and Delta ROP strains cultured in Bio(-) medium indicate that expression of the phosphoenolpyruvate carboxykinase gene (PEPCK) is induced in Delta ROP during biotin- or PC-deficiency even under glucose-abundant conditions. There is an excellent correlation between PEPCK expression and growth of Delta ROP in Bio(-) medium, suggesting that ROP-mediated regulation of PEPCK may have a crucial role in the biotin- and PC-independent growth of the Delta ROP strain. To our knowledge, ROP is the first example of a zinc finger transcription factor involved in the catabolite repression of PEPCK in yeast cells cultured under biotin- or PC-deficient and glucose-abundant conditions.
Resumo:
SrRuO3 is a well-known itinerant ferromagnet with many intriguing characteristics. The Ru deficiency in this system is believed to play a pivotal role in influencing many of its magnetic and transport properties. The present study involves the magnetic and transport properties of the Ru-deficient SrRu0.93O3 sample to gain more insight into the unusual low-temperature behavior. The ac susceptibility study reveals a sharp ferromagnetic transition at 150 K followed by a hump at T-h similar to 50 K, which has anomalous frequency dependence. Besides, the T-h shifts to lower temperatures with an increase in the superposed dc-biasing field and adheres to H-2 dependence, in accordance with the Gabay and Toulouse line for the Heisenberg spin glass systems. We also observe a pronounced memory effect toward the low-temperature side, signifying the characteristic of glassy behavior. The temperature-dependent magnetoresistance indicates the signature of an additional ordering toward the low-temperature side. All of the interesting findings combined unveil the existence of low-temperature cryptic magnetic phase in SrRu0.93O3. (C) 2012 American Institute of Physics. doi:10.1063/1.3673427]
Resumo:
To study the efficacy of ethanolic extract of B. monosperma bark in cafeteria and atherogenic diet fed rats and monosodium glutamate (MSG) obese rats, different doses (200, 400 and 800 mg/kg) of ethanolic extract of B. monosperma bark showed dose dependent decrease in body weight, daily food intake, glucose, lipids, internal organs' weight and fat pad weight in cafeteria and atherogenic diet fed rats and monosodium glutamate obese rats. The results suggested that B. monosperma has significant anti-obese activity.
Resumo:
The titled approaches were effected with various 2-substituted benzoylacetic acid oximes 3 (Beckmann) and 2-substituted malonamic acids 9 (Hofmann), their carboxyl groups being masked as a 2,4,10-trioxaadamantane unit (an orthoacetate). The oxime mesylates have been rearranged with basic Al2O3 in refluxing CHCl3, and the malonamic acids with phenyliodoso acetate and KOH/MeOH. Both routes are characterized by excellent overall yields. Structure confirmation of final products was conducted with X-ray diffraction in selected cases. The final N-benzoyl and N-(methoxycarbonyl) products are alpha-amino acids with both carboxyl and amino protection; hence, they are of great interest in peptide synthesis.
Resumo:
Oxygen-deficient defect perovskite La4BaCu5O13+d phase has been synthesized by the nitrate-citrate gel combustion method at 950 C for 2 h. Structural parameters were refined by the Rietveld refinement method using room-temperature powder XRD data. The La4BaCu5O13+d crystallizes in the tetragonal structure with space group P4/m (no. 83) and having the lattice parameters a=8.6508 c=3.8606 (1) Å and (2) Å, respectively. Oxygen content was determined by the iodometric titration. Low-temperature resistivity result reveals that La4BaCu5O13+d compound exhibit metallic behavior up to 15 K.
Resumo:
Currently beta-adrenergic receptor blockers are considered to be potential drugs under investigation for preventive or therapeutic effect in osteoporosis. However, there is no published data showing the comparative study of beta-blockers with well accepted agents for the treatment of osteoporosis. To address this question, we compared the effects of propranolol with well accepted treatments like zoledronic acid and alfacalcidol in an animal model of postmenopausal osteoporosis. Five days after ovariectomy, 36 ovariectomized (OVX) rats were divided into 6 equal groups, randomized to treatments zoledronic acid (100 mu g/kg, intravenous single dose); alfacalcidol (0.5 mu g/kg, oral gauge daily); propranolol (0.1 mg/kg, subcutaneously 5 days per week) for 12 weeks. Untreated OVX and sham OVX were used as controls. At the end of treatment serum calcium and alkaline phosphatase were assayed. Femurs were removed and tested for bone density, bone porosity, bone mechanical properties and trabecular micro-architecture. Propranolol showed a significant decrease in alkaline phosphatase levels and bone porosity in comparison to OVX control. Moreover, propranolol significantly improved bone density, bone mechanical properties and inhibited the deterioration of trabecular microarchitecture when compared with OVX control. The osteoprotective effect of propranolol was comparable with zoledronic acid and alfacalcidol. Based on this comparative study, the results strongly suggest that propranolol can be a candidate therapeutic drug for the management of postmenopausal osteoporosis.
Resumo:
Background: This study was performed to understand the possible therapeutic activity of Terminalia paniculata ethanolic extract (TPEE) on non alcoholic fatty liver in rats fed with high fat diet. Methods: Thirty six SD rats were divided into 6 groups (n = 6): Normal control (NC), high fat diet (HFD), remaining four groups were fed on HFD along with different doses of TPEE (100,150 and 200 mg/kg b.wt) or orlistat, for ten weeks. Liver tissue was homogenized and analyzed for lipid profiles, activities of superoxide dismutase (SOD), catalase (CAT) and malondialdehyde (MDA) content. Further, the expression levels of FAS and AMPK-1 alpha were also studied in addition to histopathology examination of liver tissue in all the groups. Results: HFD significantly increased hepatic liver total cholesterol (TC), triglycerides (TG), free fatty acids (FFA) and MDA but decreased the activities of SOD and CAT which were subsequently reversed by supplementation with TPEE in a dose-dependent manner. In addition, TPEE administration significantly down regulated hepatic mRNA expression of FAS but up regulated AMPK-1 alpha compared to HFD alone fed group. Furthermore, western blot analysis of FAS has clearly demonstrated decreased expression of FAS in HFD + TPEE (200 mg/kg b. wt) treated group when compared to HFD group at protein level. Conclusions: Our biochemical studies on hepatic lipid profiles and antioxidant enzyme activities supported by histological and expression studies suggest a potential therapeutic role for TPEE in regulating obesity through FAS.
Resumo:
Hydroxyapatite (HAp), a primary constituent of human bone, is usually nonstoichiometric with varying Ca/P molar ratios, with the well-known fact that Ca deficiency can cause marked reductions in its mechanical properties. To gain insights into the mechanism of this degradation, we employ first-principles calculations based on density functional theory and determine the effects of Ca deficiency on structure, vibrational, and elastic properties of HAp. Our simulation results confirm a considerable reduction in the elastic constants of HAp due to Ca deficiency, which was experimentally reported earlier. Stress-induced transformation of the Ca-deficient defected structure into a metastable state upon the application of stress could be a reason for this. Local structural stability of HAp and Ca-deficient HAp structures is assessed with full phonon dispersion studies. Further, specific signatures in the computed vibrational spectra for Ca deficiency in HAp can be utilized in experimental characterization of different types of defected HAp.
Resumo:
We conducted the present study to investigate the therapeutic effects of the antiresorptive agent zoledronic acid (ZOL), alone and in combination with alfacalcidol (ALF), in a rat model of postmenopausal osteoporosis. Female Wistar rats were ovariectomized (OVX) or sham-operated at 3 months of age. Twelve weeks post surgery, rats were randomized into six groups: (1) sham + vehicle, (2) OVX + vehicle, (3) OVX + ZOL (100 mu g/kg, i.v. single dose), (4) OVX + ZOL (50 mu g/kg, i.v. single dose), (5) OVX + ALF (0.5 mu g/kg, oral gauge daily) and (6) OVX + ZOL (50 mu g/kg, i.v. single dose) + ALF (0.5 mu g/kg, oral gauge daily) for 12 weeks. After treatment, we evaluated the mechanical properties of the lumbar vertebra and femoral mid-shaft. Femurs were also tested for bone density, porosity and trabecular micro-architecture. Biochemical markers in serum and urine were also determined. With respect to improvement in the mechanical strength of the lumbar spine and the femoral mid-shaft, the combination treatment of ZOL and ALF was more effective than each administered as a monotherapy. Moreover, combination therapy using ZOL and ALF preserved the trabecular micro-architecture and cortical bone porosity. Furthermore, the combination treatment of ZOL and ALF corrected the decrease in serum calcium and increase in serum alkaline phosphatase and the tartarate-resistant acid phosphatase level better than single-drug therapy using ZOL or ALF in OVX rats. In addition, the combination treatment of ZOL and ALF corrected the increase in urine calcium, phosphorous and creatinine levels better than single-drug therapy using ZOL or ALF in OVX rats. These data suggest that the combination treatment of ZOL and ALF has a therapeutic advantage over each monotherapy for the treatment of osteoporosis.
Resumo:
As rapid brain development occurs during the neonatal period, environmental manipulation during this period may have a significant impact on sleep and memory functions. Moreover, rapid eye movement (REM) sleep plays an important role in integrating new information with the previously stored emotional experience. Hence, the impact of early maternal separation and isolation stress (MS) during the stress hyporesponsive period (SHRP) on fear memory retention and sleep in rats were studied. The neonatal rats were subjected to maternal separation and isolation stress during postnatal days 5-7 (6 h daily/3 d). Polysomnographic recordings and differential fear conditioning was carried out in two different sets of rats aged 2 months. The neuronal replay during REM sleep was analyzed using different parameters. MS rats showed increased time in REM stage and total sleep period also increased. MS rats showed fear generalization with increased fear memory retention than normal control (NC). The detailed analysis of the local field potentials across different time periods of REM sleep showed increased theta oscillations in the hippocampus, amygdala and cortical circuits. Our findings suggest that stress during SHRP has sensitized the hippocampus amygdala cortical loops which could be due to increased release of corticosterone that generally occurs during REM sleep. These rats when subjected to fear conditioning exhibit increased fear memory and increased, fear generalization. The development of helplessness, anxiety and sleep changes in human patients, thus, could be related to the reduced thermal, tactile and social stimulation during SHRP on brain plasticity and fear memory functions. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
Oocytes present at birth undergo a progressive process of apoptosis in humans and other mammals as they age. Accepted opinion is that no fresh oocytes are produced other than those present at the time of birth. Studies have shown that DNA repair genes in oocytes of mice and women decline with age, and lack of these genes show higher DNA breaks and increased oocyte death rates. In contrast to the ethical problems associated with monitoring the changes in DNA double-strand breaks in oocytes from young and old humans, it is relatively easy to carry out such a study using a rodent model. In this study, the mRNA levels of DNA repair genes are compared with protein products of some of the genes in the primordial follicles isolated from immature (18-20 days) and aged (400-450 days) female rats. Results revealed a significant decline in mRNA levels of BRAC1 (P < 0.01), RAD51 (P < 0.05), ERCC2 (P < 0.05), and H2AX (P < 0.01) of DNA repair genes and phospho-protein levels of BRAC1 (P < 0.01) and H2AX (P < 0.05) in primordial follicles of aged rats. Impaired DNA repair is confirmed as a mechanism of oocyte ageing. (C) 2014 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.
Resumo:
Background: The prevalence and severity of obesity and associated co-morbidities are rapidly increasing across the world. Natural products-based drug intervention has been proposed as one of the crucial strategies for management of obesity ailments. This study was designed to investigate the anti-obesity activities of ethanolic extract of Terminalia paniculata bark (TPEE) on high fat diet-induced obese rats. Methods: LC-MS/MS analysis was done for ethanolic extract of T. paniculata bark. Male Sprague-Dawley (SD) rats were randomly divided into six groups of six each, normal diet fed (NC), high fat diet-fed (HFD), HFD+ orlistat (standard drug control) administered, and remaining three groups were fed with HFD + TPEE in different doses (100,150 and 200 mg/kg b. wt). For induction of obesity rats were initially fed with HFD for 9 weeks, then, (TPEE) was supplemented along with HFD for 42 days. Changes in body weight, body composition, blood glucose, insulin, tissue and serum lipid profiles, atherogenic index, liver markers, and expression of adipogenesis-related genes such as leptin, adiponectin, FAS, PPARgamma, AMPK-1alpha and SREBP-1c, were studied in experimental rats. Also, histopathological examination of adipose tissue was carried out. Results: Supplementation of TPEE reduced significantly (P < 0.05) body weight, total fat, fat percentage, atherogenic index, blood glucose, insulin, lipid profiles and liver markers in HFD-fed groups, in a dose-dependent manner. The expression of adipogenesis-related genes such as Leptin, FAS, PPARgamma, and SREBP-1c were down regulated while Adiponectin and AMPK-1alpha were up regulated in TPEE + HFD-fed rats. Furthermore, histopathological examination of adipose tissue revealed the alleviating effect of TPEE which is evident by reduced size of adipocytes. Conclusions: Together, the biochemical, histological and molecular studies unambiguously demonstrate the potential anti adipogenic and anti obesity activities of TPEE promoting it as a formidable candidate to develop anti obesity drug.