120 resultados para Cosmopolitan belonging
Resumo:
In the trishanku (triA(-)) mutant of the social amoeba Dictyostelium discoideum, aggregates are smaller than usual and the spore mass is located mid-way up the stalk, not at the apex. We have monitored aggregate territory size, spore allocation and fruiting body morphology in chimaeric groups of (quasi-wild-type) Ax2 and triA(-) cells. Developmental canalisation breaks down in chimaeras and leads to an increase in phenotypic variation. A minority of triA(-) cells causes largely Ax2 aggregation streams to break up; the effect is not due to the counting factor. Most chimaeric fruiting bodies resemble those of Ax2 or triA(-). Others are double-deckers with a single stalk and two spore masses, one each at the terminus and midway along the stalk. The relative number of spores belonging to the two genotypes depends both on the mixing ratio and on the fruiting body morphology. In double-deckers formed from 1:1 chimaeras, the upper spore mass has more Ax2 spores, and the lower spore mass more triA(-) spores, than expected. Thus, the traits under study depend partly on the cells' own genotype and partly on the phenotypes, and so genotypes, of other cells: they are both autonomous and non-autonomous. These findings strengthen the parallels between multicellular development and behaviour in social groups. Besides that, they reinforce the point that a trait can be associated with a genotype only in a specified context.
Resumo:
Fragmentation behavior of two classes of cyclodepsipeptides, isariins and isaridins, obtained from the fungus Isaria, was investigated in the presence of different metal ions using multistage tandem mass spectrometry (MS(n)) with collision induced dissociation (CID) and validated by NMR spectroscopy. During MS(n) process, both protonated and metal-cationized isariins generated product ions belonging to the identical `b-ion' series, exhibiting initial backbone cleavage explicitly at the beta-ester bond. Fragmentation behavior for the protonated and metal-cationized acyclic methyl ester derivative of isariins was very similar. On the contrary, isaridins during fragmentation produced ions belonging to the `b' or/and the `y' ion series depending on the nature of interacting metal ions, due to initial backbone cleavages at the beta-ester linkage or/and at a specific amide linkage. Interestingly, independent of the nature of the interacting metal ions, the product ions formed from the acyclic methyl ester derivative of isaridins belonged only to the `y-type'. Complementary NMR data showed that, while all metal ions were located around the beta-ester group of isariins, the metal ion interacting sites varied across the backbone for isaridins. Combined MS and NMR data suggest that the different behavior in sequence specific charge-driven fragmentation of isariins and isaridins is predetermined because of the constituent beta-hydroxy acid residue in isariins and the cis peptide bond in isaridins.
Resumo:
Digest caches have been proposed as an effective method tospeed up packet classification in network processors. In this paper, weshow that the presence of a large number of small flows and a few largeflows in the Internet has an adverse impact on the performance of thesedigest caches. In the Internet, a few large flows transfer a majority ofthe packets whereas the contribution of several small flows to the totalnumber of packets transferred is small. In such a scenario, the LRUcache replacement policy, which gives maximum priority to the mostrecently accessed digest, tends to evict digests belonging to the few largeflows. We propose a new cache management algorithm called SaturatingPriority (SP) which aims at improving the performance of digest cachesin network processors by exploiting the disparity between the number offlows and the number of packets transferred. Our experimental resultsdemonstrate that SP performs better than the widely used LRU cachereplacement policy in size constrained caches. Further, we characterizethe misses experienced by flow identifiers in digest caches.
Resumo:
The soft switching converters evolved through the resonant load, resonant switch, resonant transition and active clamp converters to eliminate switching losses in power converters. This paper briefly presents the operating principle of the new family of soft transition converters; the methodology of design of these converters is presented through an example. In the proposed family of converters, the switching transitions of both the main switch and auxiliary switch are lossless.When these converters are analysed in terms of the pole current and throw voltage, the defining equations of all converters belonging to this family become identical.Such a description allows one to define simple circuit oriented model for these converters. These circuit models help in evaluating the steady state and dynamic model of these converters. The standard dynamic performance functions of the converters are readily obtainable from this model. This paper presents these dynamic models and verifies the same through measurements on a prototype converter.
Resumo:
The soft switching converters evolved through the resonant load, resonant switch, resonant transition and active clamp converters to eliminate switching losses in power converters. This paper briefly presents the operating principle of the new family of soft transition converters; the methodology of design of these converters is presented through an example. In the proposed family of converters, the switching transitions of both the main switch and auxiliary switch are lossless. When these converters are analysed in terms of the pole current and throw voltage, the defining equations of all converters belonging to this family become identical.Such a description allows one to define simple circuit oriented model for these converters. These circuit models help in evaluating the steady state and dynamic model of these converters. The standard dynamic performance functions of the converters are readily obtainable from this model. This paper presents these dynamic models and verifies the same through measurements on a prototype converter.
Resumo:
We present a method to guess the realization of an arbitrarily varying source. Let TU be the type of the unknown state sequence. Our method results in a guessing moment that is within Kn (TU) + O(log n=n) of the minimum attainable guessing moment with full knowledge of source statistics, i.e., with knowledge of the sequence of states sn. The quantity Kn (TU) + O(log n=n) can be interpreted as the penalty one pays for not knowing the sequence of states sn of the source. Kn (TU) by itself is the penalty one pays for guessing with the additional knowledge that the state sequence belongs to type TU. Conversely, given any guessing strategy, for every type TU, there is a state sequence belonging to this type whose corresponding source forces a guessing moment penalty of at least Kn (TU) ¡ O(log n=n).
Resumo:
Many downscaling techniques have been developed in the past few years for projection of station-scale hydrological variables from large-scale atmospheric variables simulated by general circulation models (GCMs) to assess the hydrological impacts of climate change. This article compares the performances of three downscaling methods, viz. conditional random field (CRF), K-nearest neighbour (KNN) and support vector machine (SVM) methods in downscaling precipitation in the Punjab region of India, belonging to the monsoon regime. The CRF model is a recently developed method for downscaling hydrological variables in a probabilistic framework, while the SVM model is a popular machine learning tool useful in terms of its ability to generalize and capture nonlinear relationships between predictors and predictand. The KNN model is an analogue-type method that queries days similar to a given feature vector from the training data and classifies future days by random sampling from a weighted set of K closest training examples. The models are applied for downscaling monsoon (June to September) daily precipitation at six locations in Punjab. Model performances with respect to reproduction of various statistics such as dry and wet spell length distributions, daily rainfall distribution, and intersite correlations are examined. It is found that the CRF and KNN models perform slightly better than the SVM model in reproducing most daily rainfall statistics. These models are then used to project future precipitation at the six locations. Output from the Canadian global climate model (CGCM3) GCM for three scenarios, viz. A1B, A2, and B1 is used for projection of future precipitation. The projections show a change in probability density functions of daily rainfall amount and changes in the wet and dry spell distributions of daily precipitation. Copyright (C) 2011 John Wiley & Sons, Ltd.
Resumo:
Background: The present paper documents the uses of plants in traditional herbal medicine for human and veterinary ailments, and those used for dietary supplements, religious purpose, local beverage, and plants used to poison fish and wild animals. Traditional botanical medicine is the primary mode of healthcare for most of the rural population in Arunachal Pradesh. Materials and methods: Field research was conducted between April 2006 and March 2009 with randomly selected 124 key informants using semi-structured questionnaire. The data obtained was analyzed through informant consensus factor (F(IC)) to determine the homogeneity of informant's knowledge on medicinal plants. Results: We documented 50 plants species belonging to 29 families used for treating 22 human and 4 veterinary ailments. Of the medicinal plants reported, the most common growth form was herbs (40%) followed by shrubs, trees, and climbers. Leaves were most frequently used plant parts. The consensus analysis revealed that the dermatological ailments have the highest F(IC) (0.56) and the gastro-intestinal diseases have F(IC) (0.43). F(IC) values indicated that there was high agreement in the use of plants in dermatological and gastro-intestinal ailments category among the users. Gymnocladus assamicus is a critically rare and endangered species used as disinfectant for cleaning wounds and parasites like leeches and lice on livestocks. Two plant species (Illicium griffithii and Rubia cordifolia) are commonly used for traditional dyeing of clothes and food items. Some of the edible plants recorded in this study were known for their treatment against high blood pressure (Clerodendron colebrookianum), diabetes mellitus (Momordica charantia), and intestinal parasitic worms like round and tape worms (Lindera neesiana, Solanum etiopicum, and Solanum indicum). The Monpas of Arunachal Pradesh have traditionally been using Daphne papyracea for preparing hand-made paper for painting and writing religious scripts in Buddhist monasteries. Three plant species (Derris scandens, Aesculus assamica, and Polygonum hydropiper) were frequently used to poison fish during the month of June-July every year and the underground tuber of Aconitum ferrox is widely used in arrow poisoning to kill ferocious animals like bear, wild pigs, gaur and deer. The most frequently cited plant species; Buddleja asiatica and Hedyotis scandens were used as common growth supplements during the preparation of fermentation starter cultures. Conclusion: The traditional pharmacopoeia of the Monpa ethnic group incorporates a myriad of diverse botanical flora. Traditional knowledge of the remedies is passed down through oral traditions without any written document. This traditional knowledge is however, currently threatened mainly due to acculturation and deforestation due to continuing traditional shifting cultivation. This study reveals that the rural populations in Arunachal Pradesh have a rich knowledge of forest-based natural resources and consumption of wild edible plants is still an integral part of their socio-cultural life. Findings of this documentation study can be used as an ethnopharmacological basis for selecting plants for future phytochemical and pharmaceutical studies.
Resumo:
Bangalore is one of the fastest growing cities in India and is branded as ‘Silicon Valley of India’ for heralding and spearheading the growth of Information Technology (IT) based industries in the country. With the advent and growth of IT industry, as well as numerous industries in other sectors and the onset of economic liberalisation since the early 1990s, Bangalore has taken lead in service-based industries fuelling substantial growth of the city both economically and spatially. Bangalore has become a cosmopolitan city attracting people and business alike, within and across nations. This profile notes the urban setting and provides an overview of the urban fabric, while discussing various prospects related to infrastructure and governance (Sudhira, et al. 2007).
Resumo:
Protein-protein interactions are crucial for many biological functions. The redox interactome encompasses numerous weak transient interactions in which thioredoxin plays a central role. Proteomic studies have shown that thioredoxin binds to numerous proteins belonging to various cellular processes, including energy metabolism. Thioredoxin has cross talk with other redox mechanisms involving glutathionylation and has functional overlap with glutaredoxin in deglutathionylation reactions. In this study, we have explored the structural and biochemical interactions of thioredoxin with the glycolytic enzyme, triosephosphate isomerase. Nuclear magnetic resonance chemical shift mapping methods and molecular dynamics-based docking have been applied in deriving a structural model of the thioredoxin-triosephosphate isomerase complex. The spatial proximity of active site cysteine residues of thioredoxin to reactive thiol groups on triosephosphate isomerase provides a direct link to the observed deglutathionylation of cysteine 217 in triosephosphate isomerase, thereby reversing the inhibitory effect of S-glutathionylation of triosephosphate isomerase.
Resumo:
Spatial and temporal variation in foliar phenology plays a significant role in growth and reproduction of a plant species. Foliar phenology is strongly influenced by environmental factors such as rainfall. A study on phenology of tropical montane forests was undertaken in three different forest patches of the Nilgiri Mountains in peninsular India above 2000 meters ASL. Since August 2000, 500 trees belonging to 70 species of angiosperms were monitored for both vegetative and reproductive phenologies on a monthly basis. Climate data were collected from nearby weather stations. This paper reports results of the study from August 2000 - August 2003 on foliar phenology. Non-parametric correlations and multiple regressions were performed to analyse the influence of environmental factors such as rainfall, temperature and sunshine on foliar phenology. It was found that moisture related factors had a negative influence on the leaf initiation. Circular statistical analyses were performed to understand the seasonality in different phenophases of foliar phenology. Different phenophases of leafing were not significantly seasonal. Results are discussed and compared among three different forest patches on the Nilgiri plateau and also with other montane forest patches across the globe.
Resumo:
Protein−protein interactions are crucial for many biological functions. The redox interactome encompasses numerous weak transient interactions in which thioredoxin plays a central role. Proteomic studies have shown that thioredoxin binds to numerous proteins belonging to various cellular processes, including energy metabolism. Thioredoxin has cross talk with other redox mechanisms involving glutathionylation and has functional overlap with glutaredoxin in deglutathionylation reactions. In this study, we have explored the structural and biochemical interactions of thioredoxin with the glycolytic enzyme, triosephosphate isomerase. Nuclear magnetic resonance chemical shift mapping methods and molecular dynamics-based docking have been applied in deriving a structural model of the thioredoxin−triosephosphate isomerase complex. The spatial proximity of active site cysteine residues of thioredoxin to reactive thiol groups on triosephosphate isomerase provides a direct link to the observed deglutathionylation of cysteine 217 in triosephosphate isomerase, thereby reversing the inhibitory effect of S-glutathionylation of triosephosphate isomerase.
Resumo:
One of the long standing problems in quantum chemistry had been the inability to exploit full spatial and spin symmetry of an electronic Hamiltonian belonging to a non-Abelian point group. Here, we present a general technique which can utilize all the symmetries of an electronic (magnetic) Hamiltonian to obtain its full eigenvalue spectrum. This is a hybrid method based on Valence Bond basis and the basis of constant z-component of the total spin. This technique is applicable to systems with any point group symmetry and is easy to implement on a computer. We illustrate the power of the method by applying it to a model icosahedral half-filled electronic system. This model spans a huge Hilbert space (dimension 1,778,966) and in the largest non-Abelian point group. The C60 molecule has this symmetry and hence our calculation throw light on the higher energy excited states of the bucky ball. This method can also be utilized to study finite temperature properties of strongly correlated systems within an exact diagonalization approach. (C) 2011 Wiley Periodicals, Inc. Int J Quantum Chem, 2012
Resumo:
Efavirenz, (S)-6-chloro-4-(cyclopropylethynyl)-1,4-dihydro-4-(trifluoromethyl)-2H-3 ,1-benzoxazin-2-one, is an anti HIV agent belonging to the class of the non-nucleoside inhibitors of the HIV-1 virus reverse transcriptase. A systematic quantum chemical study of the possible conformations, their relative stabilities and vibrational spectra of efavirenz has been reported. Structural and spectral characteristics of efavirenz have been studied by vibrational spectroscopy and quantum chemical methods. Density functional theory (DFT) calculations for potential energy curve, optimized geometries and vibrational spectra have been carried out using 6-311++G(d,p) basis sets and B3LYP functionals. Based on these results, we have discussed the correlation between the vibrational modes and the crystalline structure of the most stable form of efavirenz. A complete analysis of the experimental infrared and Raman spectra has been reported on the basis of wavenumber of the vibrational bands and potential energy distribution. The infrared and the Raman spectra of the molecule based on OFT calculations show reasonable agreement with the experimental results. The calculated HOMO and LUMO energies shows that charge transfer occur within the molecule. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Sesbania mosaic virus (SeMV) is a positive stranded RNA virus belonging to the genus Sobemovirus. Construction of an infectious clone is an essential step for deciphering the virus gene functions in vivo. Using Agrobacterium based transient expression system we show that SeMV icDNA is infectious on Sesbania grandiflora and Cyamopsis tetragonoloba plants. The efficiency of icDNA infection was found to be significantly high on Cyamopsis plants when compared to that on Sesbania grandiflora. The coat protein could be detected within 6 days post infiltration in the infiltrated leaves. Different species of viral RNA (double stranded and single stranded genomic and subgenomic RNA) could be detected upon northern analysis, suggesting that complete replication had taken place. Based on the analysis of the sequences at the genomic termini of progeny RNA from SeMV icDNA infiltrated leaves and those of its 3' and 5' terminal deletion mutants, we propose a possible mechanism for 3' and 5' end repair in vivo. Mutation of the cleavage sites in the polyproteins encoded by ORF 2 resulted in complete loss of infection by the icDNA, suggesting the importance of correct polyprotein processing at all the four cleavage sites for viral replication. Complementation analysis suggested that ORF 2 gene products can act in trans. However, the trans acting ability of ORF 2 gene products was abolished upon deletion of the N-terminal hydrophobic domain of polyprotein 2a and 2ab, suggesting that these products necessarily function at the replication site, where they are anchored to membranes.