64 resultados para Contact spare
Resumo:
An arbitrary Lagrangian-Eulerian (ALE) finite element scheme for computations of soluble surfactant droplet impingement on a horizontal surface is presented. The numerical scheme solves the time-dependent Navier-Stokes equations for the fluid flow, scalar convection-diffusion equation for the surfactant transport in the bulk phase, and simultaneously, surface evolution equations for the surfactants on the free surface and on the liquid-solid interface. The effects of surfactants on the flow dynamics are included into the model through the surface tension and surfactant-dependent dynamic contact angle. In particular, the dynamic contact angle (theta(d)) of the droplet is defined as a function of the surfactant concentration at the contact line and the equilibrium contact angle (theta(0)(e)) of the clean surface using the nonlinear equation of state for surface tension. Further, the surface forces are included into the model as surface divergence of the surface stress tensor that allows to incorporate the Marangoni effects without calculating the surface gradient of the surfactant concentration on the free surface. In addition to a mesh convergence study and validation of the numerical results with experiments, the effects of adsorption and desorption surfactant coefficients on the flow dynamics in wetting, partially wetting and non-wetting droplets are studied in detail. It is observed that the effects of surfactants are more in wetting droplets than in the non-wetting droplets. Further, the presence of surfactants at the contact line reduces the equilibrium contact angle further when theta(0)(e) is less than 90 degrees, and increases it further when theta(0)(e) is greater than 90 degrees. Nevertheless, the presence of surfactants has no effect on the contact angle when theta(0)(e) = 90 degrees. The numerical study clearly demonstrates that the surfactant-dependent contact angle has to be considered, in addition to the Marangoni effect, in order to study the flow dynamics and the equilibrium states of surfactant droplet impingement accurately. The proposed numerical scheme guarantees the conservation of fluid mass and of the surfactant mass accurately. (C) 2015 Elsevier Inc. All rights reserved.
Resumo:
The ambiguous behavior of metal-graphene interface has been addressed in this paper using density functional theory and nonequilibrium Green's function formalism. For the first time, the fundamental chemistry of metal-graphene interface, in particular role of sp-hybridized and sp(2)-hybridized carbon atoms, has been emphasized and discussed in detail in this paper. It was discovered that the sp-hybridized sites at the edge of a graphene monolayer contribute to 40% of current conduction when compared with sp(2)-hybridized atom sites in the graphene-metal overlap region. Moreover, we highlighted the insignificance of an additional metal layer, i.e., sandwiched contact, due to lacking sp-hybridized carbon sites. A fundamental way of defining the contact resistance, while keeping chemical bonding in mind, has been proposed. The bonding insight has been further used to propose the novel ways of interfacing metal with graphene, which results in a 40% reduction in contact resistance.
Resumo:
We demonstrate a non-contact technique to apply calibrated and localized forces in the micro-Newton to milli-Newton range using an air microjet. An electromagnetically actuated diaphragm controlled by a signal generator is used to generate the air microjet. With a nozzle diameter of 150 mu m, the microjet diameter was maintained to a maximum of 1 mm at a distance of 5 mm from the nozzle. The force generated by the microjet was measured using a commercial force sensor to determine the velocity profile of the jet. Axial flow velocities of up to 25 m s(-1) were obtained at distances as long as 6 mm. The microjet exerted a force up to 1 mu N on a poly dimethyl siloxane (PDMS) micropillar (50 mu m in diameter, 157 mu m in height) and 415 mu N on a PDMS membrane (3 mm in diameter, 28 mu m thick). We also demonstrate that from a distance of 6 mm our microjet can exert a peak pressure of 187 Pa with a total force of about 84 mu N on a flat surface with 8 V operating voltage. Out of the cleanroom fabrication and robust design make this system cost effective and durable.
Resumo:
A new method for the separation of contact resistance (R-contact) into Schottky barrier resistance (R-SB) and interlayer resistance (R-IL) is proposed for multilayered MoS2 FETs. While R-SB varies exponentially with Schottky barrier height (Phi(bn)), R-IL essentially remains unchanged. An empirical model utilizing this dependence of R-contact versus Phi(bn) is proposed and fits to the experimental data. The results, on comparison with the existing reports of lowest R-contact, suggest that the extracted R-IL (1.53 k Omega.mu m) for an unaltered channel would determine the lower limit of intrinsic R-contact even for barrierless contacts for multilayered exfoliated MoS2 FETs.