107 resultados para Consumer Insights


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Metallacarboranes are promising towards realizing room temperature hydrogen storage media because of the presence of both transition metal and carbon atoms. In metallacarborane clusters, the transition metal adsorbs hydrogen molecules and carbon can link these clusters to form metal organic framework, which can serve as a complete storage medium. Using first principles density functional calculations, we chalk out the underlying principles of designing an efficient metallacarborane based hydrogen storage media. The storage capacity of hydrogen depends upon the number of available transition metal d-orbitals, number of carbons, and dopant atoms in the cluster. These factors control the amount of charge transfer from metal to the cluster, thereby affecting the number of adsorbed hydrogen molecules. This correlation between the charge transfer and storage capacity is general in nature, and can be applied to designing efficient hydrogen storage systems. Following this strategy, a search for the best metallacarborane was carried out in which Sc based monocarborane was found to be the most promising H-2 sorbent material with a 9 wt.% of reversible storage at ambient pressure and temperature. (C) 2013 AIP Publishing LLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hollow nanostructures are used for various applications including catalysis, sensing, and drug delivery. Methods based on the Kirkendall effect have been the most successful for obtaining hollow nanostructures of various multicomponent systems. The classical Kirkendall effect relies on the presence of a faster diffusing species in the core; the resultant imbalance in flux results in the formation of hollow structures. Here, an alternate non-Kirkendall mechanism that is operative for the formation of hollow single crystalline particles of intermetallic PtBi is demonstrated. The synthesis method involves sequential reduction of Pt and Bi salts in ethylene glycol under microwave irradiation. Detailed analysis of the reaction at various stages indicates that the formation of the intermetallic PtBi hollow nanoparticles occurs in steps. The mechanistic details are elucidated using control experiments. The use of microwave results in a very rapid synthesis of intermetallics PtBi that exhibits excellent electrocatalytic activity for formic acid oxidation reaction. The method presented can be extended to various multicomponent systems and is independent of the intrinsic diffusivities of the species involved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report detailed evidence for a new paleo-suture zone (the Kumta suture) on the western margin of southern India. The c. 15-km-wide, westward dipping suture zone contains garnet-biotite, fuchsite-haematite, chlorite-quartz, quartz-phengite schists, biotite augen gneiss, marble and amphibolite. The isochemical phase diagram estimations and the high-Si phengite composition of quartz-phengite schist suggest a near-peak condition of c. 18 kbar at c. 550 degrees C, followed by near-isothermal decompression. The detrital SHRIMP U-Pb zircon ages from quartz-phengite schist give four age populations ranging from 3280 to 2993 Ma. Phengite from quartz-phengite schist and biotite from garnet-biotite schist have K-Ar metamorphic ages of ca. 1326 and ca. 1385 Ma respectively. Electron microprobe-CHIME ages of in situ zircons in quartz-phengite schist (ca. 3750 Ma and ca. 1697 Ma) are consistent with the above results. The Bondla ultramafic-gabbro complex in the west of the Kumta suture compositionally represents an arc with K-Ar biotite ages from gabbro in the range 1644-1536 Ma. On the eastern side of the suture are weakly deformed and unmetamorphosed shallow westward-dipping sedimentary rocks of the Sirsi shelf, which has the following upward stratigraphy: pebbly quartzite/sandstone, turbidite, magnetite iron formation, and limestone; farther east the lower lying quartzite has an unconformable contact with ca. 2571 Ma quartzo-feldspathic gneisses of the Dharwar block with a ca. 1733 Ma biotite cooling age. To the west of the suture is a c. 60-km-wide Karwar block mainly consisting of tonalite-trondhjemite-granodiorite (TTG) and amphibolite. The TTGs have U-Pb zircon magmatic ages of ca. 3200 Ma with a rare inherited core age of ca. 3601 Ma. The K-Ar biotite cooling age from the TTGs (1746 Ma and 1796 Ma) and amphibolite (ca. 1697 Ma) represents late-stage uplift. Integration of geological, structural and geochronological data from western India and eastern Madagascar suggest diachronous ocean closure during the amalgamation of Rodinia; in the north at around ca. 1380 Ma, and a progression toward the south until ca. 750 Ma. Satellite imagery based regional structural lineaments suggests that the Betsimisaraka suture continues into western India as the Kumta suture and possibly farther south toward a suture in the Coorg area, representing in total a c. 1000 km long Rodinian suture. (C) 2013 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hydrated cocrystal of gallic acid-isoniazid displays a single crystal-to-single crystal transformation upon dehydration, resulting in a difference of three orders of magnitude in proton conduction. The conduction pathway is shown to follow the Grotthus mechanism, supported by theoretical (DFT) calculations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new evaluation of the elastic thickness (Te) structure of the Indian Shield, derived from isotropic fan wavelet methodology, documents spatial variations of lithospheric deformation in different tectonic provinces correlated with episodic tectono-thermal events. The Te variations corroborated by shear velocity, crustal thickness, and seismogenic thickness reveal the heterogeneous rheology of the Indian lithosphere. The thinned, attenuated lithosphere beneath Peninsular India is considered to be the reason for its mechanically weak strength (<30 km), where a decoupled crust-mantle rheology under different surface/subsurface loading structures may explain the prominent low Te patterns. The arcuate Te structure of the Western Dharwar province and a NNE-trending band of low Te anomaly in the Southern Granulite Terrane are intriguing patterns. The average Te values (40-50 km) of the Central Indian Tectonic Zone, the Bastar Craton, and the northern Eastern Ghats Mobile Belt are suggestive of old, stable, Indian lithosphere, which was not affected by any major tectono-thermal events after cratonic stabilization. We propose that the anomalously high Te (60-85 km) and high S-wave velocity zone to the north of the Narmada-Son Lineament, mainly in NW Himalaya, and the northern Aravalli and Bundelkhand Cratons, suggest that Archean lithosphere characterized by a high velocity mantle keel supports the orogenic topographic loads in/near the Himalaya. The Te map clearly segments the volcanic provinces of the Indian Shield, where the signatures of the Reunion, Marion, and Kerguelen hotspots are indicated by significantly low Te patterns that correlate with plume- and rift-related thermal and mechanical rejuvenation, magmatic underplating, and crustal necking. The correlations between Te variations and the occurrence of seismicity over seismically active zones reveal different causal relationships, which led to the current seismogenic zonation of the Indian Shield. (C) 2013 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Adenylosuccinate lyase (ASL), an enzyme involved in purine biosynthesis, has been recognized as a drug target against microbial infections. In the present study, ASL from Mycobacteriumsmegmatis (MsASL) and Mycobacteriumtuberculosis (MtbASL) were cloned, purified and crystallized. The X-ray crystal structure of MsASL was determined at a resolution of 2.16 angstrom. It is the first report of an apo-ASL structure with a partially ordered active site C3 loop. Diffracting crystals of MtbASL could not be obtained and a model for its structure was derived using MsASL as a template. These structures suggest that His149 and either Lys285 or Ser279 of MsASL are the residues most likely to function as the catalytic acid and base, respectively. Most of the active site residues were found to be conserved, with the exception of Ser148 and Gly319 of MsASL. Ser148 is structurally equivalent to a threonine in most other ASLs. Gly319 is replaced by an arginine residue in most ASLs. The two enzymes were catalytically much less active compared to ASLs from other organisms. Arg319Gly substitution and reduced flexibility of the C3 loop might account for the low catalytic activity of mycobacterial ASLs. The low activity is consistent with the slow growth rate of Mycobacteria and their high GC containing genomes, as well as their dependence on other salvage pathways for the supply of purine nucleotides. Structured digital abstract andby()

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Systematic structural perturbation has been used to fine-tune and understand the luminescence properties of three new 1,8-naphthalimides (NPIs) in solution and aggregates. The NPIs show blue emission in the solution state and their fluorescence quantum yields are dependent upon their molecular rigidity. In concentrated solutions of the NPIs, intermolecular interactions were found to quench the fluorescence due to the formation of excimers. In contrast, upon aggregation (in THF/H2O mixtures), the NPIs show aggregation-induced emission enhancement (AIEE). The NPIs also show moderately high solid-state emission quantum yields (ca. 10-12.7 %). The AIEE behaviour of the NPIs depends on their molecular rigidity and the nature of their intermolecular interactions. The NPIs 1-3 show different extents of intermolecular (pi-pi and C-H center dot center dot center dot O) interactions in their solid-state crystal structures depending on their substituents. Detailed photophysical, computational and structural investigations suggest that an optimal balance of structural flexibility and intermolecular communication is necessary for achieving AIEE characteristics in these NPIs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present study investigates the critical role of deformation twinning and Bs-type shear bands in the evolution of deformation texture in a low stacking fault energy Ni-60Co alloy up to very large rolling strain (epsilon(t) approximate to 4). The alloy develops a strong brass-type rolling texture, and its formation is initiated at the early stages of deformation. Extensive twinning is observed at the intermediate stages of deformation, which causes significant texture reorientation towards alpha-fiber. A pseudo-in-situ electron back-scattered diffraction technique adopted to capture orientation changes within individual grains during the early stages suggests that twinning should be subsequently aided by crystallographic slip to attain alpha-fiber (< 1 1 0 >parallel to ND) orientations. Beyond 40% reduction, deformation is dominated by Bs-type shear bands, and the banding coincides with the evolution of < 1 1 1 >parallel to ND components. The volume fraction of shear bands is significant at higher strains, and crystallites within the bands preferentially show < 1 1 0 >parallel to ND components. The absence of the Cu {1 1 2}< 1 1 1 > component in the initial texture, and subsequently during rolling, indicates that, for the evolution of a brass-type texture, the presence of the Cu component is not a necessary condition. The final rolling texture is a synergistic effect of deformation twinning and shear banding. (C) 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Crystal structures of a series of isomers of chlorofluorobenzene, bromofluorobenzene and iodofluorobenzene, all of which are liquids under ambient conditions, are determined by a technique of in situ cryocrystallography. These simple dihalo substituted benzenes provide clear insights into subtle interplay of packing interactions preferred by fluorine and heavier halogens for example, C-H center dot center dot center dot X hydrogen bonds vs. X center dot center dot center dot X halogen bonds (X=F, Cl, Br, I). The interaction patterns noted here are purely characteristic of halogens, having not been influenced by other stronger interactions. Variability of principal supramolecular synthons among the isomers highlights the importance of molecular shape and relative position of interacting atoms while preserving the basic intermolecular bonds. Mutually exclusive occurrence of homo (I center dot center dot center dot I) and hetero (I center dot center dot center dot F) halogen bonds in polymorphs of 4-iodofluorobenzene questions the robustness and reliability of these interactions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Oxidation of small organic molecules in a fuel cell is a viable method for energy production. However, the key issue is the development of suitable catalysts that exhibit high efficiencies and remain stable during operation. Here, we demonstrate that amine-modified ZnO nanorods on which ultrathin Au nanowires are grown act as an excellent catalyst for the oxidation of ethanol. We show that the modification of the ZnO nanorods with oleylamine not only modifies the electronic structure favorably but also serves to anchor the Au nanowires on the nanorods. The adsorption of OH- species on the Au nanowires that is essential for ethanol oxidation is facilitated at much lower potentials as compared to bare Au nanowires leading to high activity. While ZnO shows negligible electrocatalytic activity under normal conditions, there is significant enhancement in the activity under light irradiation. We demonstrate a synergistic enhancement in the photoelectrocatalytic activity of the ZnO/Au nanowire hybrid and provide mechanistic explanation for this enhancement based on both electronic as well as geometric effects. The principles developed are applicable for tuning the properties of other metal/semiconductor hybrids with potentially interesting applications beyond the fuel cell application demonstrated here.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The India-Asia collision profoundly influenced the climate, topography and biodiversity of Asia, causing the formation of the biodiverse Himalayas. The species-rich gekkonid genus Cyrtodactylus is an ideal clade for exploring the biological impacts of the India-Asia collision, as previous phylogenetic hypotheses suggest basal divergences occurred within the Himalayas and Indo-Burma during the Eocene. To this end, we sampled for Cyrtodactylus across Indian areas of the Himalayas and Indo-Burma Hotspots and used three genes to reconstruct relationships and estimate divergence times. Basal divergences in Cyrtodactylus, Hemidactylus and the Palaearctic naked-toed geckos were simultaneous with or just preceded the start of the India-Asia collision. Diversification within Cyrtodactylus tracks the India-Asia collision and subsequent geological events. A number of geographically concordant clades are resolved within Indo-Burmese Cyrtodactylus. Our study reveals 17 divergent lineages that may represent undescribed species, underscoring the previously undocumented diversity of the region. The importance of rocky habitats for Cyrtodactylus indicates the Indo-Gangetic flood plains and the Garo-Rajmahal Gap are likely to have been important historical barriers for this group. (C) 2014 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Developing countries constantly face the challenge of reliably matching electricity supply to increasing consumer demand. The traditional policy decisions of increasing supply and reducing demand centrally, by building new power plants and/or load shedding, have been insufficient. Locally installed microgrids along with consumer demand response can be suitable decentralized options to augment the centralized grid based systems and plug the demand-supply gap. The objectives of this paper are to: (1) develop a framework to identify the appropriate decentralized energy options for demand supply matching within a community, and, (2) determine which of these options can suitably plug the existing demand-supply gap at varying levels of grid unavailability. A scenario analysis framework is developed to identify and assess the impact of different decentralized energy options at a community level and demonstrated for a typical urban residential community Vijayanagar, Bangalore in India. A combination of LPG based CHP microgrid and proactive demand response by the community is the appropriate option that enables the Vijayanagar community to meet its energy needs 24/7 in a reliable, cost-effective manner. The paper concludes with an enumeration of the barriers and feasible strategies for the implementation of community microgrids in India based on stakeholder inputs. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: mIHF belongs to a subfamily of proteins, distinct from E. coli IHF. Results: Functionally important amino acids of mIHF and the mechanism(s) underlying DNA binding, DNA bending, and site-specific recombination are distinct from that of E. coli IHF. Conclusion: mIHF functions could contribute beyond nucleoid compaction. Significance: Because mIHF is essential for growth, the molecular mechanisms identified here can be exploited in drug screening efforts. The annotated whole-genome sequence of Mycobacterium tuberculosis revealed that Rv1388 (Mtihf) is likely to encode for a putative 20-kDa integration host factor (mIHF). However, very little is known about the functional properties of mIHF or the organization of the mycobacterial nucleoid. Molecular modeling of the mIHF three-dimensional structure, based on the cocrystal structure of Streptomyces coelicolor IHF duplex DNA, a bona fide relative of mIHF, revealed the presence of Arg-170, Arg-171, and Arg-173, which might be involved in DNA binding, and a conserved proline (Pro-150) in the tight turn. The phenotypic sensitivity of Escherichia coli ihfA and ihfB strains to UV and methyl methanesulfonate could be complemented with the wild-type Mtihf but not its alleles bearing mutations in the DNA-binding residues. Protein-DNA interaction assays revealed that wild-type mIHF, but not its DNA-binding variants, binds with high affinity to fragments containing attB and attP sites and curved DNA. Strikingly, the functionally important amino acid residues of mIHF and the mechanism(s) underlying its binding to DNA, DNA bending, and site-specific recombination are fundamentally different from that of E. coli IHF. Furthermore, we reveal novel insights into IHF-mediated DNA compaction depending on the placement of its preferred binding sites; mIHF promotes DNA compaction into nucleoid-like or higher order filamentous structures. We therefore propose that mIHF is a distinct member of a subfamily of proteins that serve as essential cofactors in site-specific recombination and nucleoid organization and that these findings represent a significant advance in our understanding of the role(s) of nucleoid-associated proteins.