72 resultados para Coffee plant
Resumo:
The potential of endophytes, particularly endophytic fungi, capable of demonstrating desirable functional traits worth exploitation using red biotechnology is well established. However, these discoveries have not yet translated into industrial bioprocesses for commercial production of biopharmaceuticals using fungal endophytes. Here, we define the current challenges in transforming curiosity driven discoveries into industrial scale endophyte biotechnology. The possible practical, feasible, and sustainable strategies that can lead to harnessing fungal endophyte-mediated pharmaceutical products are discussed.
Resumo:
Protection-based ant-plant mutualisms may vary in strength due to differences in ant rewards, abundance of protective ants and herbivory pressure. We investigated geographical and temporal variation in host plant traits and herbivory pressure at five sites spanning the distribution range of the myrmecophyte Humboldtia brunonis (Fabaceae) in the Indian Western Ghats. Southern siteshad, onaverage, 2.4 times greater abundance of domatia-bearing individuals, 1.6 times greater extrafloral nectary numbers per leaf, 1.2 times larger extrafloral nectary sizes, 2.2 times greater extrafloral nectar (EFN) volumes and a two-fold increase in total amino acid and total sugar concentrations in EFN compared with northern sites. Astrong protection-based mutualismwith ants occurred at only one southern site where herbivory was highest, suggesting that investments in attracting ants correlate with anti-herbivore benefits gained from the presence of protective ants. Our results confirm a temporally stable north-south gradient in myrmecophytic traits in this ant-plant as several of these traits were re-sampled after a 5-y interval. However, the chemical composition of EFN varied at both spatial and short-term temporal scales suggesting that only repeated measurements of rewards such as EFN can reveal the real spectrum of trait variation in an ant-plant mutualistic system.
Resumo:
The investigation involves preparation and photoluminescence properties of CeO2:Eu3+ (1-11 mol%) nano phosphors by eco-friendly green combustion route using Euphorbia tirucalli plant latex as fuel. The final product was characterized by powder X-ray diffraction (PXRD), Scanning electron microcopy (SEM) and Transmission electron microscopy (TEM). The PXRD and SEM results reveals cubic fluorite phase with flaky structure. The crystallite size obtained from TEM was found to be similar to 20-25 nm, which was comparable to W-H plots and Scherrer's method. Photoluminescence (PL) emission of all the Eu3+ doped samples shows characteristic bands arising from the transitions of D-5(0) -> F-5(J) (J = 0, 1, 2, 3, 4) manifolds under excitation at 373 and 467 nm excitation. The D-5(0) -> F-7(2) (613 nm) transition often dominate the emission spectra, indicating that the Eu3+ cations occupy a site without inversion center. The highest PL intensity was recorded for 9 mol% Eu3+ ions with 5 ml latex. PL quenching was observed upon further increase in Eu3+ concentration. The international commission on illumination (CIE) chromaticity co-ordinates were calculated from emission spectra, the values (x, y) were very close to national television system committee (NTSC) standard values of pure red emission. The results demonstrate that the synthesized phosphor material could be very useful for display applications. Further, the phosphor material prepared by this method was found to be non toxic, environmental friendly and could be a potential alternative to economical routes. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
1. Plant reproductive phenology is generally viewed as an individual's strategy to maximize gamete exchange and propagule dispersal and is often considered largely dependent on patterns of floral initiation. Reproductive phenology, however, can be affected by proximate responses to pollinators, parasites and herbivores which could influence floral longevity or fruit development time. 2. We examined the influence of insect interactants on within-plant reproductive phenology in the fig-fig wasp nursery pollination mutualism in Ficus racemosa (Moraceae). Most figs support a wasp community comprised of a mutualistic pollinator, with several host-plant-specific non-pollinating herbivorous gallers and parasitoids. These wasps reproduce within enclosed inflorescences called syconia, which develop into fruit after pollination. While different wasp species oviposit into syconia at varying times during its ontogeny, all wasp progeny are constrained to exit syconia simultaneously just prior to fruit ripening. Developing larvae of early-ovipositing wasps may hasten syconium ontogeny through formation of earlier and larger nutrient sinks, whereas larvae of late-arriving parasites may lengthen syconium ontogeny to complete their development successfully. Seeds are also important nutrient sinks. The number of seeds and the type and number of developing wasps may therefore be expected to influence syconium development times, thereby affecting the reproductive synchrony of syconia on a plant. 3. Observations on naturally pollinated and parasitized syconia indicated that their seed and wasp content affected syconium development time. Experimental manipulations of syconia to produce only seeds or various combinations of wasps confirmed this finding. Early-ovipositing galler progeny reduced syconium development times, while gallers ovipositing concurrently with pollinators had no effect on syconium development. Late-ovipositing parasitoid progeny, the presence of only seeds within the syconium, or delayed pollination increased syconium development time. The differential development of syconia, which was influenced by mutualistic or parasitic progeny, accordingly contributed to within-tree reproductive asynchrony. 4. Synthesis. Individual reproductive units in fig trees called syconia, which also function as brood sites for pollinating and parasitic fig wasps, have plastic development durations dependent on pollination timing and species of wasps developing within them. Syconium development times are a likely compromise between conflicting demands from developing seeds and different wasp species.
Resumo:
1. How a symbiosis originates and is maintained are important evolutionary questions. Symbioses in myrmecophytes (plants providing nesting for ants) are believed to be maintained by protection and nutrients provided by specialist plant-ants in exchange for nesting spaces (called domatia) and nourishment offered by ant-plants. However, besides the benefits accrued from housing protective ants, the mechanisms contributing to the fitness advantages of bearing domatia have rarely been examined, especially because the domatia trait is usually constitutively expressed, and many myrmecophytes have obligate mutualisms with single ant species resulting in invariant conditions. 2. In the unspecialized ant-plant Humboldtia brunonis (Fabaceae) that offers extrafloral nectar to ants, only some plants produce domatia in the form of hollow internodes. These domatia have a self-opening slit making them more prone to interlopers and are occupied mostly by non-protective ants and other invertebrates, especially arboreal earthworms. The protection mutualism with ants is restricted in geographical extent, occurring only at a few sites in the southernmost part of this plant's range in the Western Ghats of India. 3. We examined nutrient flux from domatia residents to the plant using stable isotopes. We found that between 9% (earthworms) and 17% (protective or non-protective ants) of nitrogen of plant tissues nearest the domatium came from domatia inhabitants. Therefore, interlopers such as earthworms and non-protective ants contributed positively to the nitrogen budget of localized plant modules of this understorey tree. N-15-enriched feeding experiments with protective ants demonstrated that nutrients flowed from domatia inhabitants to nearby plant modules. Fruit set did not differ between paired hand-pollinated inflorescences on domatia and non-domatia bearing branches. This was possibly due to the nutrient flux from domatia to adjacent branches without domatia within localized modules. 4. This study has demonstrated the nutritive role of non-protective ants and non-ant invertebrates, hitherto referred to as interlopers, in an unspecialized myrmecophyte. Our study suggests that even before the establishment of a specialized ant-plant protection mutualism, nutritional benefits conferred by domatia inhabitants can explain the fitness benefits of bearing domatia, and thus the maintenance of a trait that facilitates the establishment of a specialized ant-plant symbiosis.
Resumo:
Invasive species demonstrate rapid evolution within a very short period of time allowing one to understand the underlying mechanism(s). Lantana camara, a highly invasive plant of the tropics and subtropics, has expanded its range and successfully established itself almost throughout India. In order to uncover the processes governing the invasion dynamics, 218 individuals from various locations across India were characterized with six microsatellites. By integrating genetic data with niche modelling, we examined the effect of drift and environmental selection on genetic divergence. We found multiple genetic clusters that were non-randomly distributed across space. Spatial autocorrelation revealed a strong fine-scale structure, i.e. isolation by distance. In addition, we obtained evidence of inhibitory effects of selection on gene flow, i.e. isolation by environmental distance. Perhaps, local adaptation in response to selection is offsetting gene flow and causing the populations to diverge. Niche models suggested that temperature and precipitation play a major role in the observed spatial distribution of this plant. Based on a non-random distribution of clusters, unequal gene flow among them and different bioclimatic niche requirements, we concluded that the emergence of ecotypes represented by two genetic clusters is underway. They may be locally adapted to specific climatic conditions, and perhaps at the very early stages of ecological divergence.
Resumo:
The ant-plant Humboldtia brunonis secretes extrafloral nectar (EFN) despite the lack of antiherbivore protection from most ants. EFN was richer in composition than phloem sap and honeydew from untended Hemiptera on the plant, suggesting that EFN could potentially distract ants from honeydew, since ants rarely tended Hemiptera on this plant.
Resumo:
Availability of producer gas engines at MW being limited necessitates to adapt engine from natural gas operation. The present work focus on the development of necessary kit for adapting a 12 cylinder lean burn turbo-charged natural gas engine rated at 900 kWe (Waukesha make VHP5904LTD) to operate on producer and set up an appropriate capacity biomass gasification system for grid linked power generation in Thailand. The overall plant configuration had fuel processing, drying, reactor, cooling and cleaning system, water treatment, engine generator and power evacuation. The overall project is designed for evacuation of 1.5 MWe power to the state grid and had 2 gasification system with the above configuration and 3 engines. Two gasification system each designed for about 1100 kg/hr of woody biomass was connected to the engine using a producer gas carburetor for the necessary Air to fuel ratio control. In the use of PG to fuel IC engines, it has been recognized that the engine response will differ as compared to the response with conventional fueled operation due to the differences in the thermo-physical properties of PG. On fuelling a conventional engine with PG, power de-rating can be expected due to the lower calorific value (LCV), lower adiabatic flame temperature (AFT) and the lower than unity product to reactant more ratio. Further the A/F ratio for producer gas is about 1/10th that of natural gas and requires a different carburetor for engine operation. The research involved in developing a carburetor for varying load conditions. The patented carburetor is based on area ratio control, consisting of a zero pressure regulator and a separate gas and air line along with a mixing zone. The 95 litre engine at 1000 rpm has an electrical efficiency of 33.5 % with a heat input of 2.62 MW. Each engine had two carburetors designed for producer gas flow each capable of handling about 1200 m3/hr in order to provide similar engine heat input at a lower conversion efficiency. Cold flow studies simulating the engine carburetion system results showed that the A/F was maintained in the range of 1.3 +/- 0.1 over the entire flow range. Initially, the gasification system was tested using woody biomass and the gas composition was found to be CO 15 +/- 1.5 % H-2 22 +/- 2% CH4 2.2 +/- 0.5 CO2 11.25 +/- 1.4 % and rest N-2, with the calorific value in the range of 5.0 MJ/kg. After initial trials on the engine to fine tune the control system and adjust various engine operating parameter a peak load of 800 kWe was achieved, while a stable operating conditions was found to be at 750 kWe which is nearly 85 % of the natural gas rating. The specific fuel consumption was found to be 0.9 kg of biomass per kWh.
Resumo:
The present study focuses on exploring air-assisted atomization strategies for effective atomization of high-viscosity biofuels, such as pure plant oils (PPOs). The first part of the study concerns application of a novel air-assisted impinging jet atomization for continuous spray applications, and the second part concerns transient spray applications. The particle/droplet imaging analysis (PDIA) technique along with direct imaging methods are used for the purpose of spray characterization. In the first part, effective atomization of Jatropha PPO is demonstrated at gas-to-liquid ratios (GLRs) on the order 0.1. The effect of liquid and gas flow rates on the spray characteristics is evaluated, and results indicate a Sauter mean diameter (SMD) of 50 mu m is achieved with GLRs as low as 0.05. In the second part of the study, a commercially available air-assisted transient atomizer is evaluated using Jatropha PPO. The effect of the pressure difference across the air injector and ambient gas pressure on liquid spray characteristics is studied. The results indicate that it is possible to achieve the same level of atomization of Jatropha as diesel fuel by operating the atomizer at a higher pressure difference. Specifically, a SMD of 44 mu m is obtained for the Jatropha oil using injection pressures of <1 MPa. A further interesting observation associated with this injector is the near constancy of a nondimensional spray penetration rate for the Jatropha oil spray.
Resumo:
Two species of Pleurotus, Pleurotus florida and Pleurotus flabellatus were cultivated on two agro-residues (paddy straw; PS and coir pith; CP) singly as well as in combination with biogas digester residue (BDR, main feed leaf biomass). The biological efficiency, nutritional value, composition and nutrient balance (C, N and P) achieved with these substrates were studied. The most suitable substrate that produced higher yields and biological efficiency was PS mixed with BDR followed by coir pith with BDR. Addition of BDR with agro-residues could increase mushroom yield by 20-30%. The biological efficiency achieved was high for PS + BDR (231.93% for P. florida and 209.92% for P. flabellatus) and for CP + BDR (14831% for P. florida and 188.46% for P. flabellatus). The OC (organic carbon), TKN (nitrogen) and TP (phosphate) removal of the Pleurotus spp. under investigation suggests that PS with BDR is the best substrate for growing mushroom. (C) 2015 Published by Elsevier Inc. on behalf of International Energy Initiative.
Resumo:
Plants, herbivores and parasitoids affect each other directly and indirectly; however, feedback effects mediated by host plant traits have rarely been demonstrated in these tritrophic interactions. Brood-site pollination mutualisms (e.g. those involving figs and fig wasps) represent specialised tritrophic communities where the progeny of mutualistic pollinators and of non-mutualistic gallers (both herbivores) together with that of their parasitoids develop within enclosed inflorescences called syconia (hence termed brood-sites or microcosms). Plant reproductive phenology (which affects temporal brood-site availability) and inflorescence size (representing brood-site size) are plant traits that could affect reproductive resources, and hence relationships between trees, pollinators and non-pollinating wasps. Analysing wasp and seed contents of syconia, we examined direct, indirect, trophic and non-trophic relationships within the interaction web of the fig-fig wasp community of Ficus racemosa in the context of brood site size and availability. We demonstrate that in addition to direct resource competition and predator-prey (host-parasitoid) interactions, these communities display exploitative or apparent competition and trait-mediated indirect interactions. Inflorescence size and plant reproductive phenology impacted plant-herbivore and plant-parasitoid associations. These plant traits also influenced herbivore-herbivore and herbivore-parasitoid relationships via indirect effects. Most importantly, we found a reciprocal effect between within-tree reproductive asynchrony and fig wasp progeny abundances per syconium that drives a positive feedback cycle within the system. The impact of a multitrophic feedback cycle within a community built around a mutualistic core highlights the need for a holistic view of plant-herbivore-parasitoid interactions in the community ecology of mutualisms.
Resumo:
Several soil microbes are present in the rhizosphere zone, especially plant growth promoting rhizobacteria (PGPR), which are best known for their plant growth promoting activities. The present study reflects the effect of gold nanoparticles (GNPs) at various concentrations on the growth of PGPR. GNPs were synthesized chemically, by reduction of HAuCl 4, and further characterized by UV-Vis spectroscopy, X-ray diffraction technique (XRD), and transmission electron microscopy (TEM), etc. The impact of GNPs on PGPR was investigated by Clinical Laboratory Standards Institute (CLSI) recommended Broth-Microdilution technique against four selected PGPR viz., Pseudomonas fluorescens, Bacillus subtilis, Paenibacillus elgii, and Pseudomonas putida. Neither accelerating nor reducing impact was observed in P. putida due to GNPs. On the contrary, significant increase was observed in the case of P. fluorescens, P. elgii, and B. subtilis, and hence, GNPs can be exploited as nano-biofertilizers.