73 resultados para Calcium ion exchange capacity
Resumo:
Clay liners have been widely used to contain toxic and hazardous wastes. Clays adsorb the contaminant cations due to their exchange capacity. To improve the performance of the clay liner, fly ash, a waste material arising out of combustion of coal has been studied as a pre-filter material. The results indicate that fly ash has the potential to retain heavy metal ions. This study concerns the retention of zinc by fly ash. The influence of pH on retention as well as leaching characteristics are examined. The results obtained from the retention experiments by permeameter method indicate that fly ash retains the zinc ions through precipitation in the pores as well as onto the surface when the ambient pH value is more than 6.9, and only through adsorption when the pH value is less than 6.9. It has been observed that fly ash did not release the retained zinc ions when the pH value is between 3.5 and 10.0. Hence, the retention of zinc ions by fly ash is likely to be permanent since the pH of most of the landfill leachates are between 3.7 to 8.8.
Resumo:
The intercalation of pyridine in the layered manganese thiophosphate, MnPS3, has been examined in detail by a variety of techniques. The reaction is interesting since none of the anticipated changes in optical and electrical properties associated with intercalation of electron donating molecules is observed. The only notable change in the properties of the host lattice is in the nature of the low-temperature magnetic ordering; while MnPS3 orders antiferromagnetically below 78 K, the intercalated compound shows weak ferromagnetism probably due to a canted spin structure. Vibrational spectra clearly show that the intercalated species are pyridinium ions solvated by neutral pyridine molecules. The corresponding reduced sites of the host lattice, however, were never observed. The molecules in the solvation shell are exchangeable. Although the reaction appears to be topotactic and reversible, from XRD, a more detailed analysis of the products of deintercalation reveal that it is not so. The intercalation proceeds by an ion exchange/intercalation mechanism wherein the intercalated species are pyridinium ions solvated by neutral molecules with charge neutrality being preserved not by electron transfer but by a loss of Mn2+ ions from the lattice. The experimental evidence leading to this conclusion is discussed and it is shown that this model can account satisfactorily for the observed changes (or lack of it) in the optical, electrical, vibrational, and magnetic properties.
Resumo:
The isothermal section of the phase diagram for the system NiO-MgO-SiO2 at 1373 K is established, The tie lines between (NiXMg1-X)O solid solution with rock salt structure and orthosilicate solid solution (NiYMg1-Y)Si0.5O2 and between orthosilicate and metasilicate (NiZMg1-Z)SiO3 crystalline solutions are determined using electron probe microanalysis (EPMA) and lattice parameter measurement on equilibrated samples, Although the monoxides and orthosilicates of Ni and Mg form a continuous range of solid solutions, the metasilicate phase exists only for 0 < Z < 0.096, The activity of NiO in the rock salt solid solution is determined as a function of composition and temperature in the range of 1023 to 1377 K using a solid state galvanic cell, The Gibbs energy of mixing of the monoxide solid solution can be expressed by a pseudo-subregular solution model: Delta G(ex) = X(1 - X)[(-2430 + 0.925T)X + (-5390 + 1.758T)(1 - X)] J/mol, The thermodynamic data for the rock salt phase are combined with information on interphase partitioning of Ni and Mg to generate the mixing properties for the orthosilicate and the metasilicate solid solutions, The regular solution model describes the orthosilicate and the metasilicate solid solutions at 1373 K within experimental uncertainties, The regular solution parameter Delta G(ex)/Y(1 - Y) is -820 (+/-70) J/mol for the orthosilicate solid solution, The corresponding value for the metasilicate solid solution is -220 (+/-150) J/mol, The derived activities for the orthosilicate solid solution are discussed in relation to the intracrystalline ion exchange equilibrium between M1 and M2 sites. The tie line information, in conjunction with the activity data for orthosilicate and metasilicate solid solutions, is used to calculate the Gibbs energy changes for the intercrystalline ion exchange reactions, Combining this with the known data for NiSi0.5O2, Gibbs energies of formation of MgSi0.5O2, MgSiO3, and metastable NiSiO3 are calculated, The Gibbs energy of formation of NiSiO3, from its component oxides, is equal to 7.67 (+/-0.6) kJ/mol at 1373 K.
Resumo:
Abstract: Activities in the spinel solid solution FexMg1-xAl2O4 saturated with alpha-Al2O3 have been measured for the compositional range 0 < X < 1 between 1100 and 1350 K using a bielectrolyte solid-state galvanic cell, which may be represented as Pt, Fe + FexMg1-xAl2O4 + alpha-Al2O3//(Y2O3)ThO2/ (CaO)ZrO2//Fe + FeAl2O4 + alpha-Al2O3, Pt Activities of ferrous and magnesium aluminates exhibit small negative deviations from Raoult's law. The excess free energy of mixing of the solid solution is a symmetric function of composition and is independent of temperature: Delta G(E) = -1990 X(1 - X J/mol. Theoretical analysis of cation distribution in spinel solid solution also suggests mild negative deviations from ideality. The lattice parameter varies linearly with composition in samples quenched from 1300 K. Phase relations in the FeO-MgO-Al2O3 system at 1300 K are deduced from the results of this study and auxiliary thermodynamic data from the literature. The calculation demonstrates the influence of intracrystalline ion exchange equilibrium between nonequivalent crystallographic sites in the spinel structure on intercrystalline ion exchange equilibrium between the monoxide and spinel solid solutions (tie-lines). The composition dependence of oxygen partial pressure at 1300 K is evaluated for three-phase equilibria involving the solid solutions Fe + FexMg1-xAl2O4 + alpha-Al2O3 and Fe + FeyMg1-yO + FexMg1-xAl2O4. Dependence of X, denoting the composition of the spinel solid solution, on parameter Y, characterizing the composition of the monoxide solid solution with rock salt structure, in phase fields involving the two solid solutions is elucidated. The tie-lines are slightly skewed toward the MgAl2O4 corner.
Resumo:
Cd(0.75)PS(3)A(0.5)(H2O)(y) [A = Na, K and Cs], synthesized by the ion-exchange intercalation reaction of the insulating layered CdPS3, exhibits interesting electrical properties. The electrical properties are strongly dependent on the extent of hydration of the alkali ion which resides in the interlamellar space. In the potassium and caesium ion-exchanged compounds, y = I, the lattice expansion is similar to 3 Angstrom and the electric response characteristic of a dielectric. In the as prepared A = Na compound, y = 2, the lattice expansion is 5.6 Angstrom, the compound is conducting with a DC conductance of 3 x 10(-5) S cm(-1) at 300 K. Cd0.75PS3Na0.5(H2O)(y), y = 2, on evacuation or on heating looses water, reversibly, to form a y = 1 phase with electrical properties similar to that of the K and Cs ion exchange intercalation compounds.
Resumo:
Two vitellins, VtA and VtB, were purified from the eggs of Dysdercus koenigii by gel filtration and ion exchange chromatography. VtA and VtB have molecular weights of 290 and 260 kDa, respectively. Both Vts are glycolipoproteinaceous in nature. VtA is composed of three polypeptides of M-r 116, 92 and 62 kDa while VtB contained an additional subunit of M-r 40 kDa. All subunits except the 116-kDa subunit are glycolipopolypeptides. Polyclonal antibody raised against VtA (anti-VtA antibody) cross-reacted with VtB and also with vitellogenic haemolymph and ovaries and pre-vitellogenic fat bodies, but not with haemolymph from either adult male, fifth instar female, or pre-vitellogenic females demonstrating sex and stage specificity of the Vts. Immunoblots in the presence of anti-VtA revealed two proteins (of 290 and 260 kDa) in both vitellogenic haemolymph and pre-vitellogenic fat bodies that are recognised as D. koenigii Vgs. In newly emerged females, Vgs appeared on day 1 in fat bodies and on day 3 in haemolymph and ovaries. Vg concentration was maximum on day 2 in fat body, day 4 in haemolymph and day 7 in ovary. Although the biochemical and temporal characteristics of these proteins show similarity to some hemipterans, they are strikingly dissimilar with those of a very closely related species. (C) 1999 Elsevier Science Inc. All rights reserved.
Resumo:
A novel pentameric structure which differs from the previously reported tetrameric form of the diarrhea-inducing region of the rotavirus enterotoxin NSP4 is reported here. A significant feature of this pentameric form is the absence of the calcium ion located in the core region of the tetrameric structures. The lysis of cells, the crystallization of the region spanning residues 95 to 146 of NSP4 (NSP4(95-146)) of strain ST3 (ST3: NSP4(95-146)) at acidic pH, and comparative studies of the recombinant purified peptide under different conditions by size-exclusion chromatography (SEC) and of the crystal structures suggested pH-, Ca(2+)-, and protein concentration-dependent oligomeric transitions in the peptide. Since the NSP4(95-146) mutant lacks the N-terminal amphipathic domain (AD) and most of the C-terminal flexible region (FR), to demonstrate that the pentameric transition is not a consequence of the lack of the N- and C-terminal regions, glutaraldehyde cross-linking of the Delta N72 and Delta N94 mutant proteins, which contain or lack the AD, respectively, but possess the complete C-terminal FR, was carried out. The results indicate the presence of pentamers in preparations of these longer mutants. Detailed SEC analyses of Delta N94 prepared under different conditions, however, revealed protein concentration-dependent but metal ion-and pH-independent pentamer accumulation at high concentrations which dissociated into tetramers and lower oligomers at low protein concentrations. While calcium appeared to stabilize the tetramer, magnesium in particular stabilized the dimer. Delta N72 existed primarily in the multimeric form under all conditions. These findings of a calcium-free NSP4 pentamer and its concentration-dependent and largely calcium-independent oligomeric transitions open up a new dimension in an understanding of the structural basis of its multitude of functions.
Resumo:
EMF measurements were made with an electrochemical cell of the type ~t/&(s)/&+-beta alumina/Ag~S(s)S. 2(g). S(s or 1)/R at temperatures between 95 and 241°C. Sflver $- alumina was prepared with the ion exchange technique. The patial pressure of diatomic gas obtained from cell voltages agreed with the literature data.
Resumo:
Activities of FeCr2O4 in the spinel solid solutions Fe X Mg1−X Cr2O4 (0
Resumo:
Although Pb(Zr1−XTiX)O3 solid solution is the cornerstone of the piezoelectric ceramics, there is no information in the literature on thermodynamic activities of the component phases in the solid solution. Using inter-crystalline ion exchange equilibria between Pb(Zr1−XTiX)O3 solid solution with cubic perovskite structure and (Zr1−YTiY)O2 solid solutions with monoclinic and tetragonal structures, activities of PbTiO3 and PbZrO3 in the perovskite solid solution have been derived at 1373 K using the modified Gibbs–Duhem integration technique of Jacob and Jeffes. Tie-lines from the cubic solid solution are skewed towards the ZrO2 corner. Activities in the zirconia-rich (Zr1−YTiY)O2 solid solutions are taken from a recent emf study. The results for the perovskite solid solution at 1373 K can be represented by a sub-regular solution model:View the MathML sourcewhere ΔGE,M is the excess Gibbs energy of mixing of the cubic solid solution and Xi represents the mole fraction of component i. There is a significant positive deviation from ideality for PbTiO3-rich compositions and mild negative deviation near the PbZrO3 corner. The cubic solid solution is intrinsically stable against composition fluctuations at temperatures down to 840 K. The results contrast sharply with the recent calorimetric data on enthalpy of mixing which signal instability of the cubic perovskite solid solution.
Resumo:
The host-guest chemistry of most inorganic layered solids is limited to ion-exchange reactions. The guest species are either cations or anions to compensate for the charge deficit, either positive or negative, of the inorganic layers. Here, we outline a strategy to include neutral molecules like ortho- and para-chloranil, that are known to be good acceptors in donor-acceptor or charge-transfer complexes, within the galleries of a layered solid. We have succeeded in including neutral ortho- and para-chloranil molecules within the galleries of an Mg-Al layered double hydroxide (LDH) by using charge-transfer interactions with preintercalated p-aminobenzoate ions as the driving force. The p-aminobenzoate ions are introduced in the Mg-Al LDH via ion exchange. The intercalated LDH can adsorb ortho- and para-chloranil from chloroform solutions by forming charge-transfer complexes with the p-aminobenzoate anions present in the galleries. We use X-ray diffraction, spectroscopy, and molecular dynamics simulations to establish the nature of interactions and arrangement of the charge-transfer complex within the galleries of the layered double hydroxide.
Resumo:
The layered double hydroxides (LDH) or anionic clays are an important class of ion-exchange materials. They consist of positively charged brucite-like inorganic sheets with charge-compensating exchangeable anions in the interlamellar space. Here we show how neutral TCNQ (7,7,8,8-tetracyanoquinodimethane) molecules can be included within the galleries of an LDH. To do so, we exploit the fact that TCNQ is a good electron acceptor that forms donor acceptor complexes with a variety of donors. The electron donor aniline was intercalated into a Mg-Al LDH as p-aminobenzoate (AB) ions by a conventional ion-exchange reaction. We show here that neutral TCNQ molecules may be driven into the galleries of the layered solid by charge-transfer complex formation with the intercalated p-aminobenzoate anions. We use diffraction and spectroscopic measurements in combination with molecular dynamics simulations and quantum chemical calculations to establish the nature of interactions and arrangement of the charge-transfer complex within the galleries of the layered double hydroxide. Electrostatic interactions between the TCNQ molecules and the anchored AB ions, subsequent to charge transfer, are the driving force for the inclusion of TCNQ molecules in the galleries of the LDH.
Resumo:
Increasing nitrate concentrations in ground water is deleterious to human health as ingestion of such water can cause methemoglobinemia in infants and even cancer in adults (desirable limit for nitrate as NO3 - 45 mg/L, IS code 10500-1991). Excess nitrate concentrations in ground water is contributed by reason being disposal of sewage and excessive use of fertilizers. Though numerous technologies such as reverse osmosis, ion exchange, electro-dialysis, permeable reactive barriers using zerovalent iron etc exists, nitrate removal continues to be one of challenging issue as nitrate ion is highly mobile within the soil strata. The tapping the denitrification potential of soil denitrifiers which are inherently available in the soil matrix is the most sustainable approach to mitigate accumulation of nitrate in ground water. The insitu denitrification of sand and bentonite enhanced sand (bentonite content = 5%) in presence of easily assimilable organic carbon such as ethanol was studied. Batch studies showed that nitrate reduction by sand follows first order kinetics with a rate constant 5.3x10(-2) hr(-1) and rate constant 4.3 x 10(-2) hr(-1) was obtained for bentonite-enhanced sand (BS) at 25 degrees C. Filter columns (height = 5 cm and diameter = 8.2 cm) were constructed using sand and bentonite-enhanced sand as filter media. The filtration rate through both the filter columns was maintained at average value of 2.60 cm/h. The nitrate removal rates through both the filter media was assessed for solution containing 22.6 mg NO3-N/L concentrations while keeping C/N mass ratio as 3. For sand filter column, the nitrate removal efficiency reached the average value of 97.6% after passing 50 pore volumes of the nitrate solution. For bentonite-enhanced sand filter column, the average nitrate removal efficiency was 83.5%. The time required for effective operation for sand filter bed was 100 hours, while bentonite-enhanced sand filter bed did not require any maturation period as that of sand filter bed for effective performance because the presence of micropores in bentonite increases the hydraulic retention time of the solution inside the filter bed.