206 resultados para CONVERTING ENZYME-INHIBITION


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In order to understand the molecular mechanism of non-oxidative decarboxylation of aromatic acids observed in microbial systems, 2,3 dihydroxybenzoic acid (DHBA) decarboxylase from Image Image was purified to homogeneity by affinity chromatography. The enzyme (Mr 120 kDa) had four identical subunits (28 kDa each) and was specific for DHBA. It had a pH optimum of 5.2 and Km was 0.34mM. The decarboxylation did not require any cofactors, nor did the enzyme had any pyruvoyl group at the active site. The carboxyl group and hydroxyl group in the Image -position were required for activity. The preliminary spectroscopic properties of the enzyme are also reported.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The antitumour antibiotic, adriamycin, inhibited oxidative phosphorylation in freshly prepared mitochondria from the heart, liver and kidney of the rat. It abolished respiratory control and stimulated ATPase activity. Sccinate oxidation by heart mitochondria was extremely sensitive to the drug when hexokinase was present in the reaction medium. The sensitive site has been identified to lie in the region between the succinate dehydrogenase flavoprotein and ubiquinone of the respiratory chain.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The enzyme carnitine acetyltransferase (acetyl-CoA:carnitine O-acetyltransferase, EC 2.3.1.7) has been purified to homogeneity from hepatic mitochondria of clofibrate-fed rats. It is a protein of molecular weight 56 000 composed of two non-identical subunits of molecular weight 34 000 and 25 000. The enzyme is inhibited by palmityl-CoA as well as acetyl carnitine. The inhibition by fatty acyl-CoA is competitive with respect to both the substrates, carnitine and acetyl-CoA. The inhibition by acetylcarnitine is reversed by carnitine but not by acetyl-CoA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The inhibitory action of the anticancer antibiotic, Adriamycin, on succinate-dependent oxidative phosphorylation in heart mitochondria was markedly potentiated by the presence of hexokinase in the reaction medium. This 'hexokinase effect' was not observed in the oxidation of NAD+-linked substrates, or when liver or kidney mitochondria were used in place of heart mitochondria. These results offer a biochemical explanation for the extreme cardiac toxicity of the drug.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Generation of H2O2 by rat liver mitochondria with choline, glycerol 1-phosphate and proline as substrates has been shown by using high-concentration phosphate buffer. Rates obtained under these conditions were higher and more consistent as compared with the earlier reports with high-concentration mannitol/sucrose/Tris buffer. Sulphate ions could replace phosphate indicating a requirement for a high concentration of oxygen-containing anions. H2O2 generation was dependent on the presence of native mitochondria and substrate. Maximal rates with various substrates were found to be the same as with succinate. Values of Km and Vmax for H2O2 generation were considerably less than those obtained for respective dehydrogenase activities, measured by dye reduction. Scavengers of O2-. and OH. inhibited generation of H2O2. ATP, ADP, thyronine derivatives and a number of phenolic compounds also showed very potent inhibitory effects of H2O2 generation, whereas phenyl compound had no effect. Phenolic compounds did not have any effect on mitochondrial superoxide dismutase and choline dehydrogenase activities as well as on O2-. generation by the xanthine-xanthine oxidase system. Inhibition by phenolic compounds may have potential for regulation of the intracellular concentration of H2O2, that is not considered to have a "second messenger' function.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sheep liver 5,10-methylenetetrahydrofolate reductase was subjected to specific chemical modification with phenylglyoxal, diethyl pyrocarbonate and N-bromosuccinimide. The second-order rate constants for inactivation were calculated to be 54 M-1 X min-1, 103 M-1 X min-1 and 154 M-1 X min-1 respectively. This inactivation could be prevented by incubation with substrates or products, suggesting that the residues modified, namely arginine, histidine and tryptophan, are essential for enzyme activity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Preferred conformations of the competitive inhibitors glycyl-L-phenylalanine and glycyl-D-phenylalanine and their mode of binding to thermolysin have been studied. The difference in configuration is shown to affect significantly the mode of binding to thermolysin. Gly-D-Phe prefers to enter the active site in the global minimum conformation whereas Gly-L-Phe may enter in a higher energy conformation. Moreover, D-enantiomer is shown to have a better fit than the L-counterpart in the active site.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Among the various amines administered to excisedCucumis sativus cotyledons in short-term organ culture, agmatine (AGM) inhibited arginine decarboxylase (ADC) activity to around 50%, and putrescine was the most potent entity in this regard. Homoarginine (HARG) dramatically stimulated (3- to 4-fold) the enzyme activity. Both AGM inhibition and HARG stimulation of ADC were transient, the maximum response being elicited at 12 h of culture. Mixing experiments ruled out involvement of a macromolecular effector in the observed modulation of ADC. HARG-stimulated ADC activity was completely abolished by cycloheximide, whereas AGM-mediated inhibition was unaffected. Half-life of the enzyme did not alter on treatment with either HARG or AGM. The observed alterations in ADC activity are accompanied by change in Km of the enzyme. HARG-stimulated ADC activity is additive to that induced by benzyladenine (BA) whereas in presence of KCl, HARG failed to enhance ADC activity, thus demonstrating the overriding influence of K+ on amine metabolism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

N-[2-Naphthyl]-glycine hydrazide has been shown for the first time as a potent inhibitor of the DNA-dependent RNA polymerase (EC 2.7.7.6) of Mycobacterium tuberculosis H37Rv. At a concentration of 10 to the power -9 M, the compound shows maximum inhibition of the enzyme, the inhibition being less at higher concentrations. It is suggested that the novel type of inhibition pattern may be due to hydrophobic interactions occurring between the molecules of the compound at higher concentrations. The finding that there is a shift in the max of the compound could also account for this phenomenon. The effect of this compound was also tested on DNA-dependent RNA polymerases from an eukaryotic fungus, Microsporum canis. At a concentration of 10 to the power-9 M it inhibits RNA polymerase II (32 percent) but not RNA polymerases I and III.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The kinetic mechanism for the interaction of D-cycloserine with serine hydroxymethyltransferase (EC2.1.2.1) from sheep liver was established by measuring changes in the activity, absorbance, and circular dichoism (CD) of the enzyme. The irreversible inhibition of the enzyme was characterized by three detectable steps: an initial rapid step followed by two successive steps with rate constants of 5.4 X s-l and 1.4 X lo4 s-l. The first step was distinguished by a rapid disappearance of the enzyme absorbance peak at 425 nm, a decrease in the enzyme activity to 25% of the uninhibited velocity, and a lowering of the CD intensity at 432 nm to about 65% of the original value. The second step of the interaction was accompanied by a complete loss of enzyme.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The technique of micellar compartmentalization has been used to inhibit the diffusion-controlled self-quenching process in thioketones. By adjusting the ratio of the bulk concentration of the thioketone solute to the bulk concentration of micelles multiple occupancy of the micelles was avoided. Under these conditions enhanced phosphorescence intensity was observed in nitrogen-purged micellar solutions compared with that in acetonitrile solutions, indicating that the thioketone triple was indeed protected from deactivation by a ground statet

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The azodye 2-methyl-4-dimethylaminoazobenzene inhibited oxidation and phosphorylation in tightly coupled rat liver mitochondria. Phosphorylation was more sensitive to the inhibitory action of the azodye than was the oxidation of succinate or ascorbate. The oxidation of NAD+-linked substrate was severely inhibited by the compound. In submitochondrial particles, only NADH oxidation was sensitive. The site of inhibition has been identified to lie between the dehydrogenase flavoprotein and ubiquinone.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The interaction of the cholinergic fluorescent probes, 1-(5-dimethyl-aminoaphthalene-1-sulfonamido) ethane-2-trimethylammonium perchlorate, 1-(5-dimethylaminonaphthalene-1-sulfonamido) pentane-5-trimethylammonium tartarate and 1-(5-dimethylaminonaphthalene-1-sulfonamido) decane-10- trimethylammonium tartarate with horse serum cholinesterase has been examined by fluorescence and n.m.r. methods. Fluorescence titrations show binding of the decane derivative to two sites on the protein whereas the lower homologs bind largely to one site. Active site inhibitors like curbamylcholine and decamethonium abolish binding of the decane derivative to the high affinity site. The inhibitors are largely without effect on the binding of the lower homologs. N.m.r. studies clearly establish immobilization of both ends of the molecule on binding in the case of the decane derivative, whereas in the lower homologs the dimethylamino group on the naphthalene ring is significantly more affected in the presence of enzyme. The probes are effective inhibitors of the enzyme with the decane derivative being two orders of magnitude more effective than its lower homologs. Based on the n.m.r., fluorescence and inhibition studies, a model for probe binding to the enzyme is advanced. It appears that the decane derivative binds with high affinity to the catalytic anionic site while the lower affinity site is assigned to a peripheral anionic site. The lower homologs probe only the peripheral site. A comparison of fluorescence, n.m.r. and inhibition studies with acetylcholinesterases from electric eel and bovine erythrocytes is presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mycobacterium smegmatis topoisomerase I exhibits several distinctive characteristics among all topoisomerases. The enzyme is devoid of Zn2+fingers found typically in other bacterial type I topoisomerases and binds DNA in a site-specific manner. Using polyclonal antibodies, we demonstrate the high degree of relatedness of the enzyme across mycobacteria but not other bacteria. This absence of cross-reactivity from other bacteria indicates that mycobacterial topoisomerase I has diverged from Escherichia coli and other bacteria. We have investigated further the immunological properties of the enzyme by raising a panel of monoclonal antibodies that recognises different antigenically active regions of the enzyme and binds it with widely varied affinity. Inhibition of a C-terminal domain-specific antibody binding by enzyme-specific and non-specific oligonucleotides suggests the possibility of using these monoclonal antibodies to probe the structure, function and in vivo role of the enzyme.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ca2+ ions are necessary for the successful propagation of mycobacteriophage I3. An assay for the phage DNA release in the presence of an isolated cell wall preparation from the host was established, and in this system Ca2+ ions also stimulated the release of DNA. The inhibition of phage DNA injection caused by Tween 80 (polyoxyethylene sorbitan monooleate), a nonionic detergent routinely used in mycobacterial cultures, was reversed by Ca2+. The presence of a phage-associated ATP-hydrolyzing activity was demonstrated. This enzyme was stimulated by Ca2+ ions and inhibited by Tween 80. From this and the behavior of the two agents at the level of DNA injection, as well as the fact that phage I3 has a contractile tail structure, we conclude that the phage-associated ATPase is involved in the DNA injection process.