96 resultados para COMPUTER CALCULATIONS
Resumo:
EHT calculations on heterotrinuclear cobalt(III) complexes of the type [Cu{(OH)(2)Co(L(4))}(2)](4+) where L(4) denotes (en)(2) or (NH3)(4), en = ethylenediamine and their component species have been carried out. The results regarding bonding and structure for the trinuclear complexes are compared with those for the monomer components such as [Co(en)(2)(OH)(2)](+), [Co(NH3)(4)(OH)(2)](+) and [Cu(OH)(4)](2-) are discussed.
Resumo:
The modes of binding of adenosine 2'-monophosphate (2'-AMP) to the enzyme ribonuclease (RNase) T1 were determined by computer modelling studies. The phosphate moiety of 2'-AMP binds at the primary phosphate binding site. However, adenine can occupy two distinct sites--(1) The primary base binding site where the guanine of 2'-GMP binds and (2) The subsite close to the N1 subsite for the base on the 3'-side of guanine in a guanyl dinucleotide. The minimum energy conformers corresponding to the two modes of binding of 2'-AMP to RNase T1 were found to be of nearly the same energy implying that in solution 2'-AMP binds to the enzyme in both modes. The conformation of the inhibitor and the predicted hydrogen bonding scheme for the RNase T1-2'-AMP complex in the second binding mode (S) agrees well with the reported x-ray crystallographic study. The existence of the first mode of binding explains the experimental observations that RNase T1 catalyses the hydrolysis of phosphodiester bonds adjacent to adenosine at high enzyme concentrations. A comparison of the interactions of 2'-AMP and 2'-GMP with RNase T1 reveals that Glu58 and Asn98 at the phosphate binding site and Glu46 at the base binding site preferentially stabilise the enzyme-2'-GMP complex.
Resumo:
Bacteriorhodopsin has been the subject of intense study in order to understand its photochemical function. The recent atomic model proposed by Henderson and coworkers based on electron cryo-microscopic studies has helped in understanding many of the structural and functional aspects of bacteriorhodopsin. However, the accuracy of the positions of the side chains is not very high since the model is based on low-resolution data. In this study, we have minimized the energy of this structure of bacteriorhodopsin and analyzed various types of interactions such as - intrahelical and interhelical hydrogen bonds and retinal environment. In order to understand the photochemical action, it is necessary to obtain information on the structures adopted at the intermediate states. In this direction, we have generated some intermediate structures taking into account certain experimental data, by computer modeling studies. Various isomers of retinal with 13-cis and/or 15-cis conformations and all possible staggered orientations of Lys-216 side chain were generated. The resultant structures were examined for the distance between Lys-216-schiff base nitrogen and the carboxylate oxygen atoms of Asp-96 - a residue which is known to reprotonate the schiff base at later stages of photocycle. Some of the structures were selected on the basis of suitable retinal orientation and the stability of these structures were tested by energy minimization studies. Further, the minimized structures are analyzed for the hydrogen bond interactions and retinal environment and the results are compared with those of the minimized rest state structure. The importance of functional groups in stabilizing the structure of bacteriorhodopsin and in participating dynamically during the photocycle have been discussed.
Resumo:
An intelligent computer aided defect analysis (ICADA) system, based on artificial intelligence techniques, has been developed to identify design, process or material parameters which could be responsible for the occurrence of defective castings in a manufacturing campaign. The data on defective castings for a particular time frame, which is an input to the ICADA system, has been analysed. It was observed that a large proportion, i.e. 50-80% of all the defective castings produced in a foundry, have two, three or four types of defects occurring above a threshold proportion, say 10%. Also, a large number of defect types are either not found at all or found in a very small proportion, with a threshold value below 2%. An important feature of the ICADA system is the recognition of this pattern in the analysis. Thirty casting defect types and a large number of causes numbering between 50 and 70 for each, as identified in the AFS analysis of casting defects-the standard reference source for a casting process-constituted the foundation for building the knowledge base. Scientific rationale underlying the formation of a defect during the casting process was identified and 38 metacauses were coded. Process, material and design parameters which contribute to the metacauses were systematically examined and 112 were identified as rootcauses. The interconnections between defects, metacauses and rootcauses were represented as a three tier structured graph and the handling of uncertainty in the occurrence of events such as defects, metacauses and rootcauses was achieved by Bayesian analysis. The hill climbing search technique, associated with forward reasoning, was employed to recognize one or several root causes.
Resumo:
Real-time simulation of deformable solids is essential for some applications such as biological organ simulations for surgical simulators. In this work, deformable solids are approximated to be linear elastic, and an easy and straight forward numerical technique, the Finite Point Method (FPM), is used to model three dimensional linear elastostatics. Graphics Processing Unit (GPU) is used to accelerate computations. Results show that the Finite Point Method, together with GPU, can compute three dimensional linear elastostatic responses of solids at rates suitable for real-time graphics, for solids represented by reasonable number of points.
Resumo:
In order to understand the translational and rotational motion in dense molecular liquids, detailed molecular dynamics simulations of Lennard-Jones ellipsoids have been carried out for three different values of the aspect ratio kappa. For ellipsoids with an aspect ratio equal to 2, the product of the translational diffusion coefficient (D-T) and the average orientational correlation time of the l-th rank harmonics (tau(lR)), converges to a nearly constant value at high density. Surprisingly, this density independent value of D-T tau(lR) is within 5% of the hydrodynamic prediction with the slip boundary condition. This is despite the fact that both D-T and tau(lR) themselves change nearly by an order of magnitude in the density range considered, and the rotational correlation function itself is strongly nonexponential. For small aspect ratios (kappa less than or equal to 1.5), the rotational correlation function remains largely Gaussian even at a very large density, while for a large aspect ratio (kappa greater than or equal to 3), the transition to the nematic liquid-crystalline phase precludes the hydrodynamic regime. Thus, the rotational dynamics of ellipsoids show great sensitivity to the aspect ratio. At low density, tau(lR) goes through a minimum value, indicating the role of interactions in enhancing the rate of orientational relaxation. (C) 1997 American Institute of Physics. [S0021-9606(97)50142-5].
Resumo:
One of the hallmarks of engineering design is the design synthesis phase where the creativity of the designer most prominently comes into play as solutions are generated to meet underlying needs. Over the past decades, methodologies for generating concepts and design solutions have matured to the point that computation-based synthesis provides a means to explore a wider variety of solutions and take over more tedious design tasks. This paper reviews advances in function-based, grammar-based, and analogy-based synthesis approaches and their contributions to computational design synthesis research in the last decade. DOI: 10.1115/1.3593409]
Resumo:
This paper reports ab intio, DFT and transition state theory (TST) calculations on HF, HCI and CIF elimination reactions from CH2Cl-CH2F molecule. Both the ground state and the transition state for HX elimination reactions have been optimized at HF, MP2 and DFT calculations with 6-31G*, 6-31G** and 6-311++G** basis sets. In addition, CCSD(T) single point calculations were carried out with MP2/6-311++G** optimized geometry for more accurate determination of the energies of the minima and transition state, compared to the other methods employed here. Classical barriers are converted to Arrhenius activation energy by TST calculations for comparisons with experimental results. The pre-exponential factors, A, calculated at all levels of theory are significantly larger than the experimental values. For activation energy, E-a DFT gives good results for HF elimination, within 4-8 W mol(-1) from experimental values. None of the methods employed, including CCSD(T), give comparable results for HCI elimination reactions. However, rate constants calculated by CCSD(T) method are in very good agreement with experiment for HCI elimination and they are in reasonable agreement for HF elimination reactions. Due to the strong correlation between A and E., the rate constants could be fit to a lower A and E-a (as given by experimental fitting, corresponding to a tight TS) or to larger A and E-a (as given by high level ab initio calculations, corresponding to a loose TS). The barrier for CIF elimination is determined to be 607 U mol(-1) at HF level and it is unlikely to be important for CH2FCH2Cl. Results for other CH2X-CH2Y (X,Y = F/Cl) are included for comparison.
Resumo:
Use of engineered landfills for the disposal of industrial wastes is currently a common practice. Bentonite is attracting a greater attention not only as capping and lining materials in landfills but also as buffer and backfill materials for repositories of high-level nuclear waste around the world. In the design of buffer and backfill materials, it is important to know the swelling pressures of compacted bentonite with different electrolyte solutions. The theoretical studies on swell pressure behaviour are all based on Diffuse Double Layer (DDL) theory. To establish a relation between the swell pressure and void ratio of the soil, it is necessary to calculate the mid-plane potential in the diffuse part of the interacting ionic double layers. The difficulty in these calculations is the elliptic integral involved in the relation between half space distance and mid plane potential. Several investigators circumvented this problem using indirect methods or by using cumbersome numerical techniques. In this work, a novel approach is proposed for theoretical estimations of swell pressures of fine-grained soil from the DDL theory. The proposed approach circumvents the complex computations in establishing the relationship between mid-plane potential and diffused plates’ distances in other words, between swell pressure and void ratio.
Resumo:
Real-time simulation of deformable solids is essential for some applications such as biological organ simulations for surgical simulators. In this work, deformable solids are approximated to be linear elastic, and an easy and straight forward numerical technique, the Finite Point Method (FPM), is used to model three dimensional linear elastostatics. Graphics Processing Unit (GPU) is used to accelerate computations. Results show that the Finite Point Method, together with GPU, can compute three dimensional linear elastostatic responses of solids at rates suitable for real-time graphics, for solids represented by reasonable number of points.
Resumo:
A computer-aided procedure is described for analyzing the reliability of complicated networks. This procedure breaks down a network into small subnetworks whose reliability can be more readily calculated. The subnetworks which are searched for are those with only two nodes; this allows the original network to be considerably simplified.
Resumo:
A computer-aided procedure is described for analyzing the reliability of complicated networks. This procedure breaks down a network into small subnetworks whose reliability can be more readily calculated. The subnetworks which are searched for are those with only two nodes; this allows the original network to be considerably simplified.
Resumo:
a complete and accurate analysis is provided for the solution of single-phase induction motor performance characteristics based on a paper by F.W. Suhr ["SYMMETRICAL COMPONENTS AS APPLIED TO THE SINGLE PHASE INDUCTION MOTOR," Electrical Engineering (AlEE Transactions), volume 64, September 1945, pages 651-66].