106 resultados para CARBON-BLACK


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Among different methods, the transmission-line or the impedance tube method has been most popular for the experimental evaluation of the acoustical impedance of any termination. The current state of method involves extrapolation of the measured data to the reflecting surface or exact locations of the pressure maxima, both of which are known to be rather tricky. The present paper discusses a method which makes use of the positions of the pressure minima and the values of the standing-wave ratio at these points. Lippert's concept of enveloping curves has been extended. The use of Smith or Beranek charts, with their inherent inaccuracy, has been altogether avoided. The existing formulas for the impedance have been corrected. Incidentally, certain other errors in the current literature have also been brought to light.Subject Classification: 85.20.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Adsorption of oxygen on Ni, Cu, Pd, Ag, and Au surfaces has been investigated by employing UV and X-ray photoelectron spectrscopy as well as electron energy loss spectroscopy (EELS). Molecularly chemisorbed (singlet) oxygen is found on Ni, Cu, Ag, and Au surfaces showing features such as stabilization of the rB* orbital, destabilization of the .nu orbital, higher O(1s) binding energy than the atomic species, and a band 2-3 eV below the Fermi level due to metal d-O(2p)u* interaction. 0-0 and metal-oxygen stretching frequencies have been observed in EELS. Physical adsorption of O2 is found to occur on Pd and Ni surfaces, only at high exposures in the latter case. Physical adsorption and multilayer condensation of CO, on metal surfaces are distinguished by characteristic relaxation shifts in UPS as well as O(1s) binding energies. Adsorption of CO on a Ni surface covered with presorbed atomic oxygen gives rise to C02.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Analogies between the properties of black holes (in the framework of strong gravity) and those of elementary particles are discussed especially in connection with recent works on black holes with gauge charges and blackhole thermodynamics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For the experimental evaluation of the acoustical impedance of a termination by the impedance-tube method at low frequencies, the length of the impedance tube is a problem. In the present paper, the method of exact analysis of standing waves developed by the authors for the stationary medium as well as for mean flow, has been extended for measurement of the acoustical impedance of a termination at low frequencies. The values of the tube attenuation factor and the wave number at the low frequency of interest are established from the experiment conducted, with the given impedance tube, at a higher frequency. Then, exciting the tube at the desired low frequency it is sufficient to measure sound pressure at three differenct locations (not necessarily the minima) in order to evaluate reflection coefficient and hence the impedance of the termination at that frequency.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The transmission-line or the impedance-tube method for the measurement of the acoustic impedance of any termination involves a search for various minima and maxima of pressure. For this purpose, arrangement has to be made for the microphone to travel along the length of the impedance tube, and this complicates the design of the tube considerably. The present paper discusses a method which consists in evaluating the tube attenuation factor at any convenient frequency by making use of measured SPL's at two (or more) fixed locations with a rigid termination, calculating the tube attenuation factor and wave number at the required frequency of interest with or without mean flow (as applicable), and finally evaluating the impedance of the given termination by measuring and using SPL's at three (or more) fixed locations. Thus, the required impedance tube is considerably smaller in length, simpler in design, easier to manufacture, cheaper in cost and more convenient to use. The design of the tube is also discussed. Incidentally, it is also possible to evaluate the impedance at any low frequency without having to use a larger impedance tube.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The system CS2 + CH3NO2 shows β=0.315±0.004 over 10-6<ε=|T-Tc| / Tc<2-10-1 with no indication of a classical value ½ even far away from Tc. The diameter shows a curvature and is of the form - c+b ε+fε7 / 8exp(-gεh).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Carbon-supported Pt-TiO2 (Pt-TiO2/C) catalysts with varying at. wt ratios of Pt to Ti, namely, 1:1, 2:1, and 3:1, are prepared by the sol-gel method. The electrocatalytic activity of the catalysts toward oxygen reduction reaction (ORR), both in the presence and absence of methanol, is evaluated for application in direct methanol fuel cells (DMFCs). The optimum at. wt ratio of Pt to Ti in Pt-TiO2/C is established by fuel cell polarization, linear sweep voltammetry, and cyclic voltammetry studies. Pt-TiO2/C heattreated at 750 degrees C with Pt and Ti in an at. wt ratio of 2:1 shows enhanced methanol tolerance, while maintaining high catalytic activity toward ORR. The DMFC with a Pt-TiO2/C cathode catalyst exhibits an enhanced peak power density of 180 mW/cm(2) in contrast to the 80 mW/cm(2) achieved from the DMFC with carbon-supported Pt catalyst while operating under identical conditions. Complementary data on the influence of TiO2 on the crystallinity of Pt, surface morphology, and particle size, surface oxidation states of individual constituents, and bulk and surface compositions are also obtained by powder X-ray diffraction, scanning and transmission electron microscopy, X-ray photoelectron spectroscopy, energy dispersive analysis by X-ray, and inductively coupled plasm optical emission spectrometry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The electrical and optical response of a field-effect device comprising a network of semiconductor-enriched single-wall carbon nanotubes, gated with sodium chloride solution is investigated. Field-effect is demonstrated in a device that uses facile fabrication techniques along with a small-ion as the gate electrolyte-and this is accomplished as a result of the semiconductor enhancement of the tubes. The optical transparency and electrical resistance of the device are modulated with gate voltage. A time-response study of the modulation of optical transparency and electrical resistance upon application of gate voltage suggests the percolative charge transport in the network. Also the ac response in the network is investigated as a function of frequency and temperature down to 5 K. An empirical relation between onset frequency and temperature is determined.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Morphology and electrochemical performance of mixed crystallographic phase titania nanotubes for prospective application as anode in rechargeable lithium ion batteries are discussed. Hydrothermally grown nanotubes of titania (TiO2) and carbon-titania (C-TiO2) comprise a mixture of both anatase and TiO2 (B) crystallographic phases. The first cycle capacity (at Current rate = 10 mAg(-1)) for bare TiO2 nanotubes was 355 mAhg(-1) (approximately 1.06 Li), which is higher than both the theoretical capacity (335 mAhg(-1)) and the reported values for pure anatase and TiO2 (B) nanotubes. Higher capacity is attributed to it combination of the presence of mixed crystallographic phases of titania and trivial size effects. The surface area of bare TiO2 nanotubes was very high at 340 m(2) g(-1). C-TiO2 nanotubes showed a slightly lower first-cycle specific capacity of 307 mAhg(-1), but the irreversible capacity loss in the first cycle decreased by half compared to bare TiO2 nanotubes. The C-TiO2 nanotubes also showed a better rate capability, that is, higher capacities compared to bare TiO2 nanotubes in the Current range 0.1-2 Ag-1. Enhanced rate capability in the case of C-TiO2 is attributed to the efficient percolation of electrons as well its to the decrease in the anatase phase.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Single pellet experiments have been carried out in a nitrogen atmosphere to study the reduction of hematite by graphite in the temperature range 925 to 1060°C. The effect of variables such as c/Fe2O3 molar ratio, pellet size, and so forth, has been investigated. Gas analysis data show a continuous decrease in CO2/CO ratio during reduction, the values being far away from Fe/FeO equilibrium for wustite reduction by CO. The activation energies associated with different degrees of reduction appear to be widely different suggesting a possible changeover in reaction mechanism during the progress of reduction. X-ray diffraction studies confirm the stepwise nature of hematite reduction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Composites of Polystyrene-multi wall carbon nanotubes (PS-MWNTs) were prepared with loading up to 7 wt% of MWNTs by simple solvent mixing and drying technique. MWNTs with high aspect ratio similar to 4000 were used to make the polymer composites. A very high degree of dispersion of MWNTs was achieved by ultrasonication technique. As a result of high dispersion and high aspect ratio of the MWNTs electrical percolation was observed at rather low weight fraction similar to 0.0021. Characterization of the as prepared PS-MWNTs composites was done by Electron microscopy (EM), X-ray diffraction technique (XRD) and Thermogravimetery analysis (TGA).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Various carbon nanostructures (CNs) have been prepared by a simple deposition technique based on the pyrolysis of a new carbon source material tetrahydrofuran (THF) mixed with ferrocene using quartz tube reactor in the temperature range 700-1100 degrees C. A detailed study of how the synthesis parameter such as growth temperature affects the morphology of the carbon nanostructures is presented. The obtained CNs are investigated by scanning electron microscope (SEM), X-ray diffraction (XRD), electron dispersive scattering (EDS)thermogravimetry analysis (TGA), Raman and transmission electron microscope (TEM). It is observed that at 700 degrees C. normal CNTs are formed. Iron filled multi-walled carbon nanotubes (MWCNTs) and carbon nanoribbons (CNRs) are formed at 950 degrees C. Magnetic characterization of iron filled MWCNTs and CNRs studied at 300 K by superconducting quantum interference device (SQUID) reveals that these nanostructures have an enhanced coercivity (Hc = 1049 Oe) higher than that of bulk Fe. The large shape anisotropy of MWCNTs, which act on the encapsulated material (Fe), is attributed for the contribution of the higher coercivity. Coiled carbon nanotubes (CCNTs) were obtained as main products in large quantities at temperature 1100 degrees C.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polymer electrolytes are known to possess excellent physicochemical properties that are very useful for electrochemical energy systems. The mobility in polymer electrolytes is understood to be mainly due to the segmental motion of polymer chains and the ion transport is generally restricted to the amorphous phase of the polymer. Gel polymer electrolytes (GPE) that are formed using plastizicers and polymers along with ionic salts are known to exhibit liquid-like ionic conductivity while maintaining the dimensional stability of a solid matrix. In the present study, the preparation and characterization of poly(vinyl alcohol)-based hydrogel membranes (PHMEs) as electrolyte for electrochemical capacitors have been reported. VaryingHClO4 dopant concentration leads to different characteristics of the capacitors. The EC comprising PHME doped with 2 M HClO4 and black pearl carbon (BPC) electrodes has been found to exhibit a maximum specific capacitance value of 97 F g(-1), a phase angle value of 78A degrees, and a maximum charge-discharge coulombic efficiency of 88%.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It has been found experimentally that the results related to the collective field emission performance of carbon nanotube (CNT) arrays show variability. The emission performance depends on the electronic structure of CNTs (especially their tips). Due to limitations in the synthesis process, production of highly pure and defect free CNTs is very difficult. The presence of defects and impurities affects the electronic structure of CNTs. Therefore, it is essential to analyze the effect of defects on the electronic structure, and hence, the field emission current. In this paper, we develop a modeling approach for evaluating the effect of defects and impurities on the overall field emission performance of a CNT array. We employ a concept of effective stiffness degradation for segments of CNTs, which is due to structural defects. Then, we incorporate the vacancy defects and charge impurity effects in our Green's function based approach. Simulation results indicate decrease in average current due to the presence of such defects and impurities.