86 resultados para Breast Reconstruction


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel Projection Error Propagation-based Regularization (PEPR) method is proposed to improve the image quality in Electrical Impedance Tomography (EIT). PEPR method defines the regularization parameter as a function of the projection error developed by difference between experimental measurements and calculated data. The regularization parameter in the reconstruction algorithm gets modified automatically according to the noise level in measured data and ill-posedness of the Hessian matrix. Resistivity imaging of practical phantoms in a Model Based Iterative Image Reconstruction (MoBIIR) algorithm as well as with Electrical Impedance Diffuse Optical Reconstruction Software (EIDORS) with PEPR. The effect of PEPR method is also studied with phantoms with different configurations and with different current injection methods. All the resistivity images reconstructed with PEPR method are compared with the single step regularization (STR) and Modified Levenberg Regularization (LMR) techniques. The results show that, the PEPR technique reduces the projection error and solution error in each iterations both for simulated and experimental data in both the algorithms and improves the reconstructed images with better contrast to noise ratio (CNR), percentage of contrast recovery (PCR), coefficient of contrast (COC) and diametric resistivity profile (DRP). (C) 2013 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recently, it has been shown that fusion of the estimates of a set of sparse recovery algorithms result in an estimate better than the best estimate in the set, especially when the number of measurements is very limited. Though these schemes provide better sparse signal recovery performance, the higher computational requirement makes it less attractive for low latency applications. To alleviate this drawback, in this paper, we develop a progressive fusion based scheme for low latency applications in compressed sensing. In progressive fusion, the estimates of the participating algorithms are fused progressively according to the availability of estimates. The availability of estimates depends on computational complexity of the participating algorithms, in turn on their latency requirement. Unlike the other fusion algorithms, the proposed progressive fusion algorithm provides quick interim results and successive refinements during the fusion process, which is highly desirable in low latency applications. We analyse the developed scheme by providing sufficient conditions for improvement of CS reconstruction quality and show the practical efficacy by numerical experiments using synthetic and real-world data. (C) 2013 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Spatial resolution in photoacoustic and thermoacoustic tomography is ultrasound transducer (detector) bandwidth limited. For a circular scanning geometry the axial (radial) resolution is not affected by the detector aperture, but the tangential (lateral) resolution is highly dependent on the aperture size, and it is also spatially varying (depending on the location relative to the scanning center). Several approaches have been reported to counter this problem by physically attaching a negative acoustic lens in front of the nonfocused transducer or by using virtual point detectors. Here, we have implemented a modified delay-and-sum reconstruction method, which takes into account the large aperture of the detector, leading to more than fivefold improvement in the tangential resolution in photoacoustic (and thermoacoustic) tomography. Three different types of numerical phantoms were used to validate our reconstruction method. It is also shown that we were able to preserve the shape of the reconstructed objects with the modified algorithm. (C) 2014 Optical Society of America

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although many sparse recovery algorithms have been proposed recently in compressed sensing (CS), it is well known that the performance of any sparse recovery algorithm depends on many parameters like dimension of the sparse signal, level of sparsity, and measurement noise power. It has been observed that a satisfactory performance of the sparse recovery algorithms requires a minimum number of measurements. This minimum number is different for different algorithms. In many applications, the number of measurements is unlikely to meet this requirement and any scheme to improve performance with fewer measurements is of significant interest in CS. Empirically, it has also been observed that the performance of the sparse recovery algorithms also depends on the underlying statistical distribution of the nonzero elements of the signal, which may not be known a priori in practice. Interestingly, it can be observed that the performance degradation of the sparse recovery algorithms in these cases does not always imply a complete failure. In this paper, we study this scenario and show that by fusing the estimates of multiple sparse recovery algorithms, which work with different principles, we can improve the sparse signal recovery. We present the theoretical analysis to derive sufficient conditions for performance improvement of the proposed schemes. We demonstrate the advantage of the proposed methods through numerical simulations for both synthetic and real signals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electrical Impedance Tomography (EIT) is a computerized medical imaging technique which reconstructs the electrical impedance images of a domain under test from the boundary voltage-current data measured by an EIT electronic instrumentation using an image reconstruction algorithm. Being a computed tomography technique, EIT injects a constant current to the patient's body through the surface electrodes surrounding the domain to be imaged (Omega) and tries to calculate the spatial distribution of electrical conductivity or resistivity of the closed conducting domain using the potentials developed at the domain boundary (partial derivative Omega). Practical phantoms are essentially required to study, test and calibrate a medical EIT system for certifying the system before applying it on patients for diagnostic imaging. Therefore, the EIT phantoms are essentially required to generate boundary data for studying and assessing the instrumentation and inverse solvers a in EIT. For proper assessment of an inverse solver of a 2D EIT system, a perfect 2D practical phantom is required. As the practical phantoms are the assemblies of the objects with 3D geometries, the developing of a practical 2D-phantom is a great challenge and therefore, the boundary data generated from the practical phantoms with 3D geometry are found inappropriate for assessing a 2D inverse solver. Furthermore, the boundary data errors contributed by the instrumentation are also difficult to separate from the errors developed by the 3D phantoms. Hence, the errorless boundary data are found essential to assess the inverse solver in 2D EIT. In this direction, a MatLAB-based Virtual Phantom for 2D EIT (MatVP2DEIT) is developed to generate accurate boundary data for assessing the 2D-EIT inverse solvers and the image reconstruction accuracy. MatVP2DEIT is a MatLAB-based computer program which simulates a phantom in computer and generates the boundary potential data as the outputs by using the combinations of different phantom parameters as the inputs to the program. Phantom diameter, inhomogeneity geometry (shape, size and position), number of inhomogeneities, applied current magnitude, background resistivity, inhomogeneity resistivity all are set as the phantom variables which are provided as the input parameters to the MatVP2DEIT for simulating different phantom configurations. A constant current injection is simulated at the phantom boundary with different current injection protocols and boundary potential data are calculated. Boundary data sets are generated with different phantom configurations obtained with the different combinations of the phantom variables and the resistivity images are reconstructed using EIDORS. Boundary data of the virtual phantoms, containing inhomogeneities with complex geometries, are also generated for different current injection patterns using MatVP2DEIT and the resistivity imaging is studied. The effect of regularization method on the image reconstruction is also studied with the data generated by MatVP2DEIT. Resistivity images are evaluated by studying the resistivity parameters and contrast parameters estimated from the elemental resistivity profiles of the reconstructed phantom domain. Results show that the MatVP2DEIT generates accurate boundary data for different types of single or multiple objects which are efficient and accurate enough to reconstruct the resistivity images in EIDORS. The spatial resolution studies show that, the resistivity imaging conducted with the boundary data generated by MatVP2DEIT with 2048 elements, can reconstruct two circular inhomogeneities placed with a minimum distance (boundary to boundary) of 2 mm. It is also observed that, in MatVP2DEIT with 2048 elements, the boundary data generated for a phantom with a circular inhomogeneity of a diameter less than 7% of that of the phantom domain can produce resistivity images in EIDORS with a 1968 element mesh. Results also show that the MatVP2DEIT accurately generates the boundary data for neighbouring, opposite reference and trigonometric current patterns which are very suitable for resistivity reconstruction studies. MatVP2DEIT generated data are also found suitable for studying the effect of the different regularization methods on reconstruction process. Comparing the reconstructed image with an original geometry made in MatVP2DEIT, it would be easier to study the resistivity imaging procedures as well as the inverse solver performance. Using the proposed MatVP2DEIT software with modified domains, the cross sectional anatomy of a number of body parts can be simulated in PC and the impedance image reconstruction of human anatomy can be studied.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PurposeTo extend the previously developed temporally constrained reconstruction (TCR) algorithm to allow for real-time availability of three-dimensional (3D) temperature maps capable of monitoring MR-guided high intensity focused ultrasound applications. MethodsA real-time TCR (RT-TCR) algorithm is developed that only uses current and previously acquired undersampled k-space data from a 3D segmented EPI pulse sequence, with the image reconstruction done in a graphics processing unit implementation to overcome computation burden. Simulated and experimental data sets of HIFU heating are used to evaluate the performance of the RT-TCR algorithm. ResultsThe simulation studies demonstrate that the RT-TCR algorithm has subsecond reconstruction time and can accurately measure HIFU-induced temperature rises of 20 degrees C in 15 s for 3D volumes of 16 slices (RMSE = 0.1 degrees C), 24 slices (RMSE = 0.2 degrees C), and 32 slices (RMSE = 0.3 degrees C). Experimental results in ex vivo porcine muscle demonstrate that the RT-TCR approach can reconstruct temperature maps with 192 x 162 x 66 mm 3D volume coverage, 1.5 x 1.5 x 3.0 mm resolution, and 1.2-s scan time with an accuracy of 0.5 degrees C. ConclusionThe RT-TCR algorithm offers an approach to obtaining large coverage 3D temperature maps in real-time for monitoring MR-guided high intensity focused ultrasound treatments. Magn Reson Med 71:1394-1404, 2014. (c) 2013 Wiley Periodicals, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Simulated boundary potential data for Electrical Impedance Tomography (EIT) are generated by a MATLAB based EIT data generator and the resistivity reconstruction is evaluated with Electrical Impedance Tomography and Diffuse Optical Tomography Reconstruction Software (EIDORS). Circular domains containing subdomains as inhomogeneity are defined in MATLAB-based EIT data generator and the boundary data are calculated by a constant current simulation with opposite current injection (OCI) method. The resistivity images reconstructed for different boundary data sets and images are analyzed with image parameters to evaluate the reconstruction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The standard approach to signal reconstruction in frequency-domain optical-coherence tomography (FDOCT) is to apply the inverse Fourier transform to the measurements. This technique offers limited resolution (due to Heisenberg's uncertainty principle). We propose a new super-resolution reconstruction method based on a parametric representation. We consider multilayer specimens, wherein each layer has a constant refractive index and show that the backscattered signal from such a specimen fits accurately in to the framework of finite-rate-of-innovation (FRI) signal model and is represented by a finite number of free parameters. We deploy the high-resolution Prony method and show that high-quality, super-resolved reconstruction is possible with fewer measurements (about one-fourth of the number required for the standard Fourier technique). To further improve robustness to noise in practical scenarios, we take advantage of an iterated singular-value decomposition algorithm (Cadzow denoiser). We present results of Monte Carlo analyses, and assess statistical efficiency of the reconstruction techniques by comparing their performance against the Cramer-Rao bound. Reconstruction results on experimental data obtained from technical as well as biological specimens show a distinct improvement in resolution and signal-to-reconstruction noise offered by the proposed method in comparison with the standard approach.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: The Bmi1 polycomb ring finger oncogene, a transcriptional repressor belonging to the Polycomb group of proteins plays an important role in the regulation of stem cell self-renewal and is elevated in several cancers. In the current study, we have explored the role of Bmi1 in regulating the stemness and drug resistance of breast cancer cells. Methods: Using real time PCR and immunohistochemistry primary breast tissues were analyzed. Retro-and lentiviruses were utilized to overexpress and knockdown Bmi1, RT-PCR and Western blot was performed to evaluate mRNA and protein expression. Stemness properties were analyzed by flow cytometry and sphere-formation and tumor formation was determined by mouse xenograft experiments. Dual luciferase assay was employed to assess promoter activity and MTT assay was used to analyze drug response. Results: We found Bmi1 overexpression in 64% of grade III invasive ductal breast adenocarcinomas compared to normal breast tissues. Bmi1 overexpression in immortalized and transformed breast epithelial cells increased their sphere-forming efficiency, induced epithelial to mesenchymal transition ( EMT) with an increase in the expression of stemness-related genes. Knockdown of Bmi1 in tumorigenic breast cells induced epithelial morphology, reduced expression of stemness-related genes, decreased the IC50 values of doxorubicin and abrogated tumor-formation. Bmi1-high tumors showed elevated Nanog expression whereas the tumors with lower Bmi1 showed reduced Nanog levels. Overexpression of Bmi1 increased Nanog levels whereas knockdown of Bmi1 reduced its expression. Dual luciferase promoter-reporter assay revealed Bmi1 positively regulated the Nanog and NF kappa B promoter activity. RT-PCR analysis showed that Bmi1 overexpression activated the NF kappa B pathway whereas Bmi1 knockdown reduced the expression of NF kappa B target genes, suggesting that Bmi1 might regulate Nanog expression through the NF kappa B pathway. Conclusions: Our study showed that Bmi1 is overexpressed in several high-grade, invasive ductal breast adenocarcinomas, thus supporting its role as a prognostic marker. While Bmi1 overexpression increased self-renewal and promoted EMT, its knockdown reversed EMT, reduced stemness, and rendered cells drug sensitive, thus highlighting a crucial role for Bmi1 in regulating the stemness and drug response of breast cancer cells. Bmi1 may control self-renewal through the regulation of Nanog expression via the NF kappa B pathway.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of Projection Reconstruction (PR) to obtain two-dimensional (2D) spectra from one-dimensional (1D) data in the solid state is illustrated. The method exploits multiple 1D spectra obtained using magic angle spinning and off-magic angle spinning. The spectra recorded under the influence of scaled heteronuclear scalar and dipolar couplings in the presence of homonuclear dipolar decoupling sequences have been used to reconstruct J/D Resolved 2D-NMR spectra. The use of just two 1D spectra is observed sufficient to reconstruct a J-resolved 2D-spectrum while a Separated Local Field (SLF) 2D-NMR spectrum could be obtained from three 1D spectra. The experimental techniques for recording the 10 spectra and procedure of reconstruction are discussed and the reconstructed results are compared with 20 experiments recorded in traditional methods. The application of the technique has been made to a solid polycrystalline sample and to a uniaxially oriented liquid crystal. Implementation of PR-NMR in solid state provides high-resolution spectra as well as leads to significant reduction in experimental time. The experiments are relatively simple and are devoid of several technical complications involved in performing the 2D experiments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Magnetic Resonance Imaging (MRI) has been widely used in cancer treatment planning, which takes the advantage of high-resolution and high-contrast provided by it. The raw data collected in the MRI can also be used to obtain the temperature maps and has been explored for performing MR thermometry. This review article describes the methods that are used in performing MR thermometry, with an emphasis on reconstruction methods that are useful to obtain these temperature maps in real-time for large region of interest. This article also proposes a prior-image constrained reconstruction method for temperature reconstruction in MR thermometry, and a systematic comparison using ex-vivo tissue experiments with state of the art reconstruction method is presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aberrant activation of Notch and Ras pathways has been detected in breast cancers. A synergy between these two pathways has also been shown in breast cell transformation in culture. Yet, the clinical relevance of Notch-Ras cooperation in breast cancer progression remains unexplored. In this study, we show that coordinate hyperactivation of Notch1 and Ras/MAPK pathways in breast cancer patient specimens, as assessed by IHC for cleaved Notch1 and pErk1/2, respectively, correlated with early relapse to vital organs and poor overall survival. Interestingly, majority of such Notch1 (high)Erk(high) cases encompassed the highly aggressive triple-negative breast cancers (TNBC), and were enriched in stem cell markers. We further show that combinatorial inhibition of Notch1 and Ras/MAPK pathways, using a novel mAb against Notch1 and a MEK inhibitor, respectively, led to a significant reduction in proliferation and survival of breast cancer cells compared with individual inhibition. Combined inhibition also abrogated sphere-forming potential, and depleted the putative cancer stem-like cell subpopulation. Most importantly, combinatorial inhibition of Notch1 and Ras/MAPK pathways completely blocked tumor growth in a panel of breast cancer xenografts, including the TNBCs. Thus, our study identifies coordinate hyperactivation of Notch1 and Ras/MAPK pathways as novel biomarkers for poor breast cancer outcome. Furthermore, based on our preclinical data, we propose combinatorial targeting of these two pathways as a treatment strategy for highly aggressive breast cancers, particularly the TNBCs that currently lack any targeted therapeutic module. (C) 2014 AACR.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It has been shown that iterative re-weighted strategies will often improve the performance of many sparse reconstruction algorithms. However, these strategies are algorithm dependent and cannot be easily extended for an arbitrary sparse reconstruction algorithm. In this paper, we propose a general iterative framework and a novel algorithm which iteratively enhance the performance of any given arbitrary sparse reconstruction algorithm. We theoretically analyze the proposed method using restricted isometry property and derive sufficient conditions for convergence and performance improvement. We also evaluate the performance of the proposed method using numerical experiments with both synthetic and real-world data. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have developed a real-time imaging method for two-color wide-field fluorescence microscopy using a combined approach that integrates multi-spectral imaging and Bayesian image reconstruction technique. To enable simultaneous observation of two dyes (primary and secondary), we exploit their spectral properties that allow parallel recording in both the channels. The key advantage of this technique is the use of a single wavelength of light to excite both the primary dye and the secondary dye. The primary and secondary dyes respectively give rise to fluorescence and bleed-through signal, which after normalization were merged to obtain two-color 3D images. To realize real-time imaging, we employed maximum likelihood (ML) and maximum a posteriori (MAP) techniques on a high-performance computing platform (GPU). The results show two-fold improvement in contrast while the signal-to-background ratio (SBR) is improved by a factor of 4. We report a speed boost of 52 and 350 for 2D and 3D images respectively. Using this system, we have studied the real-time protein aggregation in yeast cells and HeLa cells that exhibits dot-like protein distribution. The proposed technique has the ability to temporally resolve rapidly occurring biological events.